Quasi-Steady Convergence of Multistep Navier–Stokes Icing Simulations

A newly developed two-dimensional ice accretion and antiicing simulation code, CANICE2D-NS, is presented. The method is used to predict iced airfoil shapes and performance degradation with a multistep approach. A multiblock Navier–Stokes code, NSMB, has been coupled with the CANICE2D icing framework...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of aircraft 2013-07, Vol.50 (4), p.1261-1274
Hauptverfasser: Hasanzadeh, K, Laurendeau, E, Paraschivoiu, I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1274
container_issue 4
container_start_page 1261
container_title Journal of aircraft
container_volume 50
creator Hasanzadeh, K
Laurendeau, E
Paraschivoiu, I
description A newly developed two-dimensional ice accretion and antiicing simulation code, CANICE2D-NS, is presented. The method is used to predict iced airfoil shapes and performance degradation with a multistep approach. A multiblock Navier–Stokes code, NSMB, has been coupled with the CANICE2D icing framework, supplementing the existing panel method-based flow solver. Attention is paid to the roughness implementation within the turbulence model and to the convergence of the steady and quasi-steady iterative procedure. The new coupling allows fully automated multilayer icing simulation, whereas also permitting flow analysis and performance prediction of iced airfoils. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases. The results demonstrates the benefits and robustness of the new framework in predicting ice shapes and aerodynamic performance parameters, as well as iced airfoil surface pressure coefficients. Finally, the convergence of the quasi-steady algorithm is verified and identifies the need for an order of magnitude increase in the number of multitime steps in icing simulations.
doi_str_mv 10.2514/1.C032197
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_2493165303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493165303</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-d786bd06fced75c9cd503f3a6812838514f82fb9e521a77b2bcac79e0018f09f3</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbLwjcYEEUXU3OSTi5LKVoLVZHqejjNJBKdztRkpuDOd_ANfRJHWkQUXJ3Nd_5zIeQAaJ9lMDiD_pByBlpukB5knKdcCbVJepQySJUQepvsxPhEKVVUyh4Z3bUYfTptLBavybCuljY82srYpHbJdVs2PjZ2kdzg0tvw8fY-bepnG5Ox8dVjMvXztsTG11XcI1sOy2j313WXPFxe3A-v0sntaDw8n6TIpW7SQioxK6hwxhYyM9oUGeWOo1DAFFfdBU4xN9M2Y4BSztjMoJHaUgrKUe34LjlZ5S5C_dLa2ORzH40tS6xs3cYcBkwrJZjIOnr4iz7Vbai67XI20Bw6Qvl_CgYAIJXmrFOnK2VCHWOwLl8EP8fwmgPNvx6fQ75-fGeP1okYDZYuYGV8_G5gMtNdpOjc8cqhR_wx9U_gJxHEjI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1411178932</pqid></control><display><type>article</type><title>Quasi-Steady Convergence of Multistep Navier–Stokes Icing Simulations</title><source>Alma/SFX Local Collection</source><creator>Hasanzadeh, K ; Laurendeau, E ; Paraschivoiu, I</creator><creatorcontrib>Hasanzadeh, K ; Laurendeau, E ; Paraschivoiu, I</creatorcontrib><description>A newly developed two-dimensional ice accretion and antiicing simulation code, CANICE2D-NS, is presented. The method is used to predict iced airfoil shapes and performance degradation with a multistep approach. A multiblock Navier–Stokes code, NSMB, has been coupled with the CANICE2D icing framework, supplementing the existing panel method-based flow solver. Attention is paid to the roughness implementation within the turbulence model and to the convergence of the steady and quasi-steady iterative procedure. The new coupling allows fully automated multilayer icing simulation, whereas also permitting flow analysis and performance prediction of iced airfoils. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases. The results demonstrates the benefits and robustness of the new framework in predicting ice shapes and aerodynamic performance parameters, as well as iced airfoil surface pressure coefficients. Finally, the convergence of the quasi-steady algorithm is verified and identifies the need for an order of magnitude increase in the number of multitime steps in icing simulations.</description><identifier>ISSN: 0021-8669</identifier><identifier>EISSN: 1533-3868</identifier><identifier>DOI: 10.2514/1.C032197</identifier><identifier>CODEN: JAIRAM</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamics ; Air transportation and traffic ; Airfoils ; Algorithms ; Applied sciences ; Computational fluid dynamics ; Computer simulation ; Convergence ; Energy ; Exact sciences and technology ; Fluid flow ; Ground, air and sea transportation, marine construction ; Ice accumulation ; Ice formation ; Icing ; Iterative methods ; Mathematical models ; Multilayers ; Natural energy ; Navier-Stokes equations ; Panel method (fluid dynamics) ; Performance degradation ; Performance prediction ; Pressure ; Simulation ; Studies ; Surface roughness ; Turbulence models ; Wind energy</subject><ispartof>Journal of aircraft, 2013-07, Vol.50 (4), p.1261-1274</ispartof><rights>Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1542-3868/13 and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-3868/13 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-d786bd06fced75c9cd503f3a6812838514f82fb9e521a77b2bcac79e0018f09f3</citedby><cites>FETCH-LOGICAL-a379t-d786bd06fced75c9cd503f3a6812838514f82fb9e521a77b2bcac79e0018f09f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27599326$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hasanzadeh, K</creatorcontrib><creatorcontrib>Laurendeau, E</creatorcontrib><creatorcontrib>Paraschivoiu, I</creatorcontrib><title>Quasi-Steady Convergence of Multistep Navier–Stokes Icing Simulations</title><title>Journal of aircraft</title><description>A newly developed two-dimensional ice accretion and antiicing simulation code, CANICE2D-NS, is presented. The method is used to predict iced airfoil shapes and performance degradation with a multistep approach. A multiblock Navier–Stokes code, NSMB, has been coupled with the CANICE2D icing framework, supplementing the existing panel method-based flow solver. Attention is paid to the roughness implementation within the turbulence model and to the convergence of the steady and quasi-steady iterative procedure. The new coupling allows fully automated multilayer icing simulation, whereas also permitting flow analysis and performance prediction of iced airfoils. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases. The results demonstrates the benefits and robustness of the new framework in predicting ice shapes and aerodynamic performance parameters, as well as iced airfoil surface pressure coefficients. Finally, the convergence of the quasi-steady algorithm is verified and identifies the need for an order of magnitude increase in the number of multitime steps in icing simulations.</description><subject>Aerodynamics</subject><subject>Air transportation and traffic</subject><subject>Airfoils</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Ice accumulation</subject><subject>Ice formation</subject><subject>Icing</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Multilayers</subject><subject>Natural energy</subject><subject>Navier-Stokes equations</subject><subject>Panel method (fluid dynamics)</subject><subject>Performance degradation</subject><subject>Performance prediction</subject><subject>Pressure</subject><subject>Simulation</subject><subject>Studies</subject><subject>Surface roughness</subject><subject>Turbulence models</subject><subject>Wind energy</subject><issn>0021-8669</issn><issn>1533-3868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbLwjcYEEUXU3OSTi5LKVoLVZHqejjNJBKdztRkpuDOd_ANfRJHWkQUXJ3Nd_5zIeQAaJ9lMDiD_pByBlpukB5knKdcCbVJepQySJUQepvsxPhEKVVUyh4Z3bUYfTptLBavybCuljY82srYpHbJdVs2PjZ2kdzg0tvw8fY-bepnG5Ox8dVjMvXztsTG11XcI1sOy2j313WXPFxe3A-v0sntaDw8n6TIpW7SQioxK6hwxhYyM9oUGeWOo1DAFFfdBU4xN9M2Y4BSztjMoJHaUgrKUe34LjlZ5S5C_dLa2ORzH40tS6xs3cYcBkwrJZjIOnr4iz7Vbai67XI20Bw6Qvl_CgYAIJXmrFOnK2VCHWOwLl8EP8fwmgPNvx6fQ75-fGeP1okYDZYuYGV8_G5gMtNdpOjc8cqhR_wx9U_gJxHEjI8</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Hasanzadeh, K</creator><creator>Laurendeau, E</creator><creator>Paraschivoiu, I</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>U9A</scope></search><sort><creationdate>20130701</creationdate><title>Quasi-Steady Convergence of Multistep Navier–Stokes Icing Simulations</title><author>Hasanzadeh, K ; Laurendeau, E ; Paraschivoiu, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-d786bd06fced75c9cd503f3a6812838514f82fb9e521a77b2bcac79e0018f09f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aerodynamics</topic><topic>Air transportation and traffic</topic><topic>Airfoils</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Ice accumulation</topic><topic>Ice formation</topic><topic>Icing</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Multilayers</topic><topic>Natural energy</topic><topic>Navier-Stokes equations</topic><topic>Panel method (fluid dynamics)</topic><topic>Performance degradation</topic><topic>Performance prediction</topic><topic>Pressure</topic><topic>Simulation</topic><topic>Studies</topic><topic>Surface roughness</topic><topic>Turbulence models</topic><topic>Wind energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasanzadeh, K</creatorcontrib><creatorcontrib>Laurendeau, E</creatorcontrib><creatorcontrib>Paraschivoiu, I</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aircraft</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasanzadeh, K</au><au>Laurendeau, E</au><au>Paraschivoiu, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-Steady Convergence of Multistep Navier–Stokes Icing Simulations</atitle><jtitle>Journal of aircraft</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>50</volume><issue>4</issue><spage>1261</spage><epage>1274</epage><pages>1261-1274</pages><issn>0021-8669</issn><eissn>1533-3868</eissn><coden>JAIRAM</coden><abstract>A newly developed two-dimensional ice accretion and antiicing simulation code, CANICE2D-NS, is presented. The method is used to predict iced airfoil shapes and performance degradation with a multistep approach. A multiblock Navier–Stokes code, NSMB, has been coupled with the CANICE2D icing framework, supplementing the existing panel method-based flow solver. Attention is paid to the roughness implementation within the turbulence model and to the convergence of the steady and quasi-steady iterative procedure. The new coupling allows fully automated multilayer icing simulation, whereas also permitting flow analysis and performance prediction of iced airfoils. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases. The results demonstrates the benefits and robustness of the new framework in predicting ice shapes and aerodynamic performance parameters, as well as iced airfoil surface pressure coefficients. Finally, the convergence of the quasi-steady algorithm is verified and identifies the need for an order of magnitude increase in the number of multitime steps in icing simulations.</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.C032197</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8669
ispartof Journal of aircraft, 2013-07, Vol.50 (4), p.1261-1274
issn 0021-8669
1533-3868
language eng
recordid cdi_proquest_journals_2493165303
source Alma/SFX Local Collection
subjects Aerodynamics
Air transportation and traffic
Airfoils
Algorithms
Applied sciences
Computational fluid dynamics
Computer simulation
Convergence
Energy
Exact sciences and technology
Fluid flow
Ground, air and sea transportation, marine construction
Ice accumulation
Ice formation
Icing
Iterative methods
Mathematical models
Multilayers
Natural energy
Navier-Stokes equations
Panel method (fluid dynamics)
Performance degradation
Performance prediction
Pressure
Simulation
Studies
Surface roughness
Turbulence models
Wind energy
title Quasi-Steady Convergence of Multistep Navier–Stokes Icing Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-Steady%20Convergence%20of%20Multistep%20Navier%E2%80%93Stokes%20Icing%20Simulations&rft.jtitle=Journal%20of%20aircraft&rft.au=Hasanzadeh,%20K&rft.date=2013-07-01&rft.volume=50&rft.issue=4&rft.spage=1261&rft.epage=1274&rft.pages=1261-1274&rft.issn=0021-8669&rft.eissn=1533-3868&rft.coden=JAIRAM&rft_id=info:doi/10.2514/1.C032197&rft_dat=%3Cproquest_pasca%3E2493165303%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1411178932&rft_id=info:pmid/&rfr_iscdi=true