Quasi-Steady Convergence of Multistep Navier–Stokes Icing Simulations
A newly developed two-dimensional ice accretion and antiicing simulation code, CANICE2D-NS, is presented. The method is used to predict iced airfoil shapes and performance degradation with a multistep approach. A multiblock Navier–Stokes code, NSMB, has been coupled with the CANICE2D icing framework...
Gespeichert in:
Veröffentlicht in: | Journal of aircraft 2013-07, Vol.50 (4), p.1261-1274 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1274 |
---|---|
container_issue | 4 |
container_start_page | 1261 |
container_title | Journal of aircraft |
container_volume | 50 |
creator | Hasanzadeh, K Laurendeau, E Paraschivoiu, I |
description | A newly developed two-dimensional ice accretion and antiicing simulation code, CANICE2D-NS, is presented. The method is used to predict iced airfoil shapes and performance degradation with a multistep approach. A multiblock Navier–Stokes code, NSMB, has been coupled with the CANICE2D icing framework, supplementing the existing panel method-based flow solver. Attention is paid to the roughness implementation within the turbulence model and to the convergence of the steady and quasi-steady iterative procedure. The new coupling allows fully automated multilayer icing simulation, whereas also permitting flow analysis and performance prediction of iced airfoils. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases. The results demonstrates the benefits and robustness of the new framework in predicting ice shapes and aerodynamic performance parameters, as well as iced airfoil surface pressure coefficients. Finally, the convergence of the quasi-steady algorithm is verified and identifies the need for an order of magnitude increase in the number of multitime steps in icing simulations. |
doi_str_mv | 10.2514/1.C032197 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_2493165303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493165303</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-d786bd06fced75c9cd503f3a6812838514f82fb9e521a77b2bcac79e0018f09f3</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbLwjcYEEUXU3OSTi5LKVoLVZHqejjNJBKdztRkpuDOd_ANfRJHWkQUXJ3Nd_5zIeQAaJ9lMDiD_pByBlpukB5knKdcCbVJepQySJUQepvsxPhEKVVUyh4Z3bUYfTptLBavybCuljY82srYpHbJdVs2PjZ2kdzg0tvw8fY-bepnG5Ox8dVjMvXztsTG11XcI1sOy2j313WXPFxe3A-v0sntaDw8n6TIpW7SQioxK6hwxhYyM9oUGeWOo1DAFFfdBU4xN9M2Y4BSztjMoJHaUgrKUe34LjlZ5S5C_dLa2ORzH40tS6xs3cYcBkwrJZjIOnr4iz7Vbai67XI20Bw6Qvl_CgYAIJXmrFOnK2VCHWOwLl8EP8fwmgPNvx6fQ75-fGeP1okYDZYuYGV8_G5gMtNdpOjc8cqhR_wx9U_gJxHEjI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1411178932</pqid></control><display><type>article</type><title>Quasi-Steady Convergence of Multistep Navier–Stokes Icing Simulations</title><source>Alma/SFX Local Collection</source><creator>Hasanzadeh, K ; Laurendeau, E ; Paraschivoiu, I</creator><creatorcontrib>Hasanzadeh, K ; Laurendeau, E ; Paraschivoiu, I</creatorcontrib><description>A newly developed two-dimensional ice accretion and antiicing simulation code, CANICE2D-NS, is presented. The method is used to predict iced airfoil shapes and performance degradation with a multistep approach. A multiblock Navier–Stokes code, NSMB, has been coupled with the CANICE2D icing framework, supplementing the existing panel method-based flow solver. Attention is paid to the roughness implementation within the turbulence model and to the convergence of the steady and quasi-steady iterative procedure. The new coupling allows fully automated multilayer icing simulation, whereas also permitting flow analysis and performance prediction of iced airfoils. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases. The results demonstrates the benefits and robustness of the new framework in predicting ice shapes and aerodynamic performance parameters, as well as iced airfoil surface pressure coefficients. Finally, the convergence of the quasi-steady algorithm is verified and identifies the need for an order of magnitude increase in the number of multitime steps in icing simulations.</description><identifier>ISSN: 0021-8669</identifier><identifier>EISSN: 1533-3868</identifier><identifier>DOI: 10.2514/1.C032197</identifier><identifier>CODEN: JAIRAM</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamics ; Air transportation and traffic ; Airfoils ; Algorithms ; Applied sciences ; Computational fluid dynamics ; Computer simulation ; Convergence ; Energy ; Exact sciences and technology ; Fluid flow ; Ground, air and sea transportation, marine construction ; Ice accumulation ; Ice formation ; Icing ; Iterative methods ; Mathematical models ; Multilayers ; Natural energy ; Navier-Stokes equations ; Panel method (fluid dynamics) ; Performance degradation ; Performance prediction ; Pressure ; Simulation ; Studies ; Surface roughness ; Turbulence models ; Wind energy</subject><ispartof>Journal of aircraft, 2013-07, Vol.50 (4), p.1261-1274</ispartof><rights>Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1542-3868/13 and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-3868/13 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-d786bd06fced75c9cd503f3a6812838514f82fb9e521a77b2bcac79e0018f09f3</citedby><cites>FETCH-LOGICAL-a379t-d786bd06fced75c9cd503f3a6812838514f82fb9e521a77b2bcac79e0018f09f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27599326$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hasanzadeh, K</creatorcontrib><creatorcontrib>Laurendeau, E</creatorcontrib><creatorcontrib>Paraschivoiu, I</creatorcontrib><title>Quasi-Steady Convergence of Multistep Navier–Stokes Icing Simulations</title><title>Journal of aircraft</title><description>A newly developed two-dimensional ice accretion and antiicing simulation code, CANICE2D-NS, is presented. The method is used to predict iced airfoil shapes and performance degradation with a multistep approach. A multiblock Navier–Stokes code, NSMB, has been coupled with the CANICE2D icing framework, supplementing the existing panel method-based flow solver. Attention is paid to the roughness implementation within the turbulence model and to the convergence of the steady and quasi-steady iterative procedure. The new coupling allows fully automated multilayer icing simulation, whereas also permitting flow analysis and performance prediction of iced airfoils. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases. The results demonstrates the benefits and robustness of the new framework in predicting ice shapes and aerodynamic performance parameters, as well as iced airfoil surface pressure coefficients. Finally, the convergence of the quasi-steady algorithm is verified and identifies the need for an order of magnitude increase in the number of multitime steps in icing simulations.</description><subject>Aerodynamics</subject><subject>Air transportation and traffic</subject><subject>Airfoils</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Ice accumulation</subject><subject>Ice formation</subject><subject>Icing</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Multilayers</subject><subject>Natural energy</subject><subject>Navier-Stokes equations</subject><subject>Panel method (fluid dynamics)</subject><subject>Performance degradation</subject><subject>Performance prediction</subject><subject>Pressure</subject><subject>Simulation</subject><subject>Studies</subject><subject>Surface roughness</subject><subject>Turbulence models</subject><subject>Wind energy</subject><issn>0021-8669</issn><issn>1533-3868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbLwjcYEEUXU3OSTi5LKVoLVZHqejjNJBKdztRkpuDOd_ANfRJHWkQUXJ3Nd_5zIeQAaJ9lMDiD_pByBlpukB5knKdcCbVJepQySJUQepvsxPhEKVVUyh4Z3bUYfTptLBavybCuljY82srYpHbJdVs2PjZ2kdzg0tvw8fY-bepnG5Ox8dVjMvXztsTG11XcI1sOy2j313WXPFxe3A-v0sntaDw8n6TIpW7SQioxK6hwxhYyM9oUGeWOo1DAFFfdBU4xN9M2Y4BSztjMoJHaUgrKUe34LjlZ5S5C_dLa2ORzH40tS6xs3cYcBkwrJZjIOnr4iz7Vbai67XI20Bw6Qvl_CgYAIJXmrFOnK2VCHWOwLl8EP8fwmgPNvx6fQ75-fGeP1okYDZYuYGV8_G5gMtNdpOjc8cqhR_wx9U_gJxHEjI8</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Hasanzadeh, K</creator><creator>Laurendeau, E</creator><creator>Paraschivoiu, I</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>U9A</scope></search><sort><creationdate>20130701</creationdate><title>Quasi-Steady Convergence of Multistep Navier–Stokes Icing Simulations</title><author>Hasanzadeh, K ; Laurendeau, E ; Paraschivoiu, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-d786bd06fced75c9cd503f3a6812838514f82fb9e521a77b2bcac79e0018f09f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aerodynamics</topic><topic>Air transportation and traffic</topic><topic>Airfoils</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Ice accumulation</topic><topic>Ice formation</topic><topic>Icing</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Multilayers</topic><topic>Natural energy</topic><topic>Navier-Stokes equations</topic><topic>Panel method (fluid dynamics)</topic><topic>Performance degradation</topic><topic>Performance prediction</topic><topic>Pressure</topic><topic>Simulation</topic><topic>Studies</topic><topic>Surface roughness</topic><topic>Turbulence models</topic><topic>Wind energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasanzadeh, K</creatorcontrib><creatorcontrib>Laurendeau, E</creatorcontrib><creatorcontrib>Paraschivoiu, I</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aircraft</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasanzadeh, K</au><au>Laurendeau, E</au><au>Paraschivoiu, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-Steady Convergence of Multistep Navier–Stokes Icing Simulations</atitle><jtitle>Journal of aircraft</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>50</volume><issue>4</issue><spage>1261</spage><epage>1274</epage><pages>1261-1274</pages><issn>0021-8669</issn><eissn>1533-3868</eissn><coden>JAIRAM</coden><abstract>A newly developed two-dimensional ice accretion and antiicing simulation code, CANICE2D-NS, is presented. The method is used to predict iced airfoil shapes and performance degradation with a multistep approach. A multiblock Navier–Stokes code, NSMB, has been coupled with the CANICE2D icing framework, supplementing the existing panel method-based flow solver. Attention is paid to the roughness implementation within the turbulence model and to the convergence of the steady and quasi-steady iterative procedure. The new coupling allows fully automated multilayer icing simulation, whereas also permitting flow analysis and performance prediction of iced airfoils. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases. The results demonstrates the benefits and robustness of the new framework in predicting ice shapes and aerodynamic performance parameters, as well as iced airfoil surface pressure coefficients. Finally, the convergence of the quasi-steady algorithm is verified and identifies the need for an order of magnitude increase in the number of multitime steps in icing simulations.</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.C032197</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8669 |
ispartof | Journal of aircraft, 2013-07, Vol.50 (4), p.1261-1274 |
issn | 0021-8669 1533-3868 |
language | eng |
recordid | cdi_proquest_journals_2493165303 |
source | Alma/SFX Local Collection |
subjects | Aerodynamics Air transportation and traffic Airfoils Algorithms Applied sciences Computational fluid dynamics Computer simulation Convergence Energy Exact sciences and technology Fluid flow Ground, air and sea transportation, marine construction Ice accumulation Ice formation Icing Iterative methods Mathematical models Multilayers Natural energy Navier-Stokes equations Panel method (fluid dynamics) Performance degradation Performance prediction Pressure Simulation Studies Surface roughness Turbulence models Wind energy |
title | Quasi-Steady Convergence of Multistep Navier–Stokes Icing Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-Steady%20Convergence%20of%20Multistep%20Navier%E2%80%93Stokes%20Icing%20Simulations&rft.jtitle=Journal%20of%20aircraft&rft.au=Hasanzadeh,%20K&rft.date=2013-07-01&rft.volume=50&rft.issue=4&rft.spage=1261&rft.epage=1274&rft.pages=1261-1274&rft.issn=0021-8669&rft.eissn=1533-3868&rft.coden=JAIRAM&rft_id=info:doi/10.2514/1.C032197&rft_dat=%3Cproquest_pasca%3E2493165303%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1411178932&rft_id=info:pmid/&rfr_iscdi=true |