Seismic Efficiency for Simple Crater Formation in the Martian Top Crust Analog
The first seismometer operating on the surface of another planet was deployed by the NASA InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission to Mars. It gives us an opportunity to investigate the seismicity of Mars, including any seismic activity caused b...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Planets 2021-02, Vol.126 (2), p.n/a, Article 2020 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of geophysical research. Planets |
container_volume | 126 |
creator | Rajšić, A. Miljković, K. Collins, G. S. Wünnemann, K. Daubar, I. J. Wójcicka, N. Wieczorek, M. A. |
description | The first seismometer operating on the surface of another planet was deployed by the NASA InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission to Mars. It gives us an opportunity to investigate the seismicity of Mars, including any seismic activity caused by small meteorite bombardment. Detectability of impact generated seismic signals is closely related to the seismic efficiency, defined as the fraction of the impactor's kinetic energy transferred into the seismic energy in a target medium. This work investigated the seismic efficiency of the Martian near surface associated with small meteorite impacts on Mars. We used the iSALE‐2D (Impact‐Simplified Arbitrary Lagrangian Eulerian) shock physics code to simulate the formation of the meter‐size impact craters, and we used a recently formed 1.5 m diameter crater as a case study. The Martian crust was simulated as unfractured nonporous bedrock, fractured bedrock with 25% porosity, and highly porous regolith with 44% and 65% porosity. We used appropriate strength and porosity models defined in previous works, and we identified that the seismic efficiency is very sensitive to the speed of sound and elastic threshold in the target medium. We constrained the value of the impact‐related seismic efficiency to be between the order of ∼10‐7 to 10‐6 for the regolith and ∼10‐4 to 10‐3 for the bedrock. For new impacts occurring on Mars, this work can help understand the near‐surface properties of the Martian crust, and it contributes to the understanding of impact detectability via seismic signals as a function of the target media.
Plain Language Summary
Impact cratering is a common geological process on solid planetary bodies. When impact occurs, it releases shock waves into the target medium. The impactor's kinetic energy is spent on internal energy change (heating), plastic (irreversible) and elastic (reversible) deformation in the target. Seismic efficiency describes how much of the impact's kinetic energy is transferred into seismic energy. Having estimates for the values of the seismic efficiency in such events can help in further describing the properties of the Martian surface, particularly if impact conditions are known. In this work, we are using the iSALE‐2D (Impact‐Simplified Arbitrary Lagrangian Eulerian) shock physics code to simulate meter‐size crater formation on Mars. Our results show that the pressure wave behaves differently in different target properties. Th |
doi_str_mv | 10.1029/2020JE006662 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2493152673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493152673</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4028-faa82cc8bf3124fc815d873e4a6f8de2b77d179f9e0ac99e9d6caedd195ed3c03</originalsourceid><addsrcrecordid>eNqNkEtLAzEQxxdRUNSbHyDgSbSax24ex7LUF1XBxzmk2YlGtpuabJV-e9NWxZM4lxmG338YfkVxQPApwVSdUUzx9QhjzjndKHYo4WqgCMab3zNWYrvYT-kV55J5RdhOcfsAPk29RSPnvPXQ2QVyIaIHP521gOpoeojoPMSp6X3okO9Q_wLoxsTemw49hllm5qlHw8604Xmv2HKmTbD_1XeLp_PRY305GN9dXNXD8cCUmMqBM0ZSa-XEMUJLZyWpGikYlIY72QCdCNEQoZwCbKxSoBpuDTQNURU0zGK2Wxyt776YVs-in5q40MF4fTkc6-UOM8YrLug7yezhmp3F8DaH1OvXMI_53aRpqRipKBcsUydrysaQUgT3c5ZgvRSsfwvO-PEa_4BJcGllDn4iWTCnJROC54mITMv_07XvV67rMO_6HGVfUd_C4s-n9PXF_YiSSkr2CS8tm0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493152673</pqid></control><display><type>article</type><title>Seismic Efficiency for Simple Crater Formation in the Martian Top Crust Analog</title><source>Access via Wiley Online Library</source><source>Wiley Free Content</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Rajšić, A. ; Miljković, K. ; Collins, G. S. ; Wünnemann, K. ; Daubar, I. J. ; Wójcicka, N. ; Wieczorek, M. A.</creator><creatorcontrib>Rajšić, A. ; Miljković, K. ; Collins, G. S. ; Wünnemann, K. ; Daubar, I. J. ; Wójcicka, N. ; Wieczorek, M. A.</creatorcontrib><description>The first seismometer operating on the surface of another planet was deployed by the NASA InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission to Mars. It gives us an opportunity to investigate the seismicity of Mars, including any seismic activity caused by small meteorite bombardment. Detectability of impact generated seismic signals is closely related to the seismic efficiency, defined as the fraction of the impactor's kinetic energy transferred into the seismic energy in a target medium. This work investigated the seismic efficiency of the Martian near surface associated with small meteorite impacts on Mars. We used the iSALE‐2D (Impact‐Simplified Arbitrary Lagrangian Eulerian) shock physics code to simulate the formation of the meter‐size impact craters, and we used a recently formed 1.5 m diameter crater as a case study. The Martian crust was simulated as unfractured nonporous bedrock, fractured bedrock with 25% porosity, and highly porous regolith with 44% and 65% porosity. We used appropriate strength and porosity models defined in previous works, and we identified that the seismic efficiency is very sensitive to the speed of sound and elastic threshold in the target medium. We constrained the value of the impact‐related seismic efficiency to be between the order of ∼10‐7 to 10‐6 for the regolith and ∼10‐4 to 10‐3 for the bedrock. For new impacts occurring on Mars, this work can help understand the near‐surface properties of the Martian crust, and it contributes to the understanding of impact detectability via seismic signals as a function of the target media.
Plain Language Summary
Impact cratering is a common geological process on solid planetary bodies. When impact occurs, it releases shock waves into the target medium. The impactor's kinetic energy is spent on internal energy change (heating), plastic (irreversible) and elastic (reversible) deformation in the target. Seismic efficiency describes how much of the impact's kinetic energy is transferred into seismic energy. Having estimates for the values of the seismic efficiency in such events can help in further describing the properties of the Martian surface, particularly if impact conditions are known. In this work, we are using the iSALE‐2D (Impact‐Simplified Arbitrary Lagrangian Eulerian) shock physics code to simulate meter‐size crater formation on Mars. Our results show that the pressure wave behaves differently in different target properties. The numerical simulation results showed that the seismic efficiency spans 2 orders of magnitude, for the investigated crater size range and target analog for the Martian bedrock and regolith.
Key Points
Seismic efficiency decreases with the increase of porosity
Seismic efficiency is ∼8 × 10‐4 in bedrock and ∼4 × 10‐7 to ∼4 × 10‐6 in highly porous regolith, for Martian simulants
Pressure propagation is significantly dependent on the target's crushing strength, elastic threshold and speed sound, and resolution</description><identifier>ISSN: 2169-9097</identifier><identifier>EISSN: 2169-9100</identifier><identifier>DOI: 10.1029/2020JE006662</identifier><language>eng</language><publisher>WASHINGTON: Amer Geophysical Union</publisher><subject>Bedrock ; Bombardment ; Earth Sciences ; Efficiency ; Elastic deformation ; Elastic waves ; Energy ; Geochemistry & Geophysics ; Geodesy ; Geological processes ; Heat transport ; impact cratering ; InSight mission ; Internal energy ; Investigations ; iSALE‐2D code ; Kinetic energy ; Mars ; Mars craters ; Mars surface ; Mathematical models ; Meteorite collisions ; Meteorite impacts ; Meteorite impacts on Mars ; Meteors & meteorites ; numerical modeling ; Numerical simulations ; Physical Sciences ; Physics ; Planetology ; Porosity ; Properties (attributes) ; Regolith ; Science & Technology ; Sciences of the Universe ; Seismic activity ; seismic efficiency ; Seismic energy ; Seismicity ; Seismographs ; Seismometers ; Shock waves ; Simulation ; Surface properties</subject><ispartof>Journal of geophysical research. Planets, 2021-02, Vol.126 (2), p.n/a, Article 2020</ispartof><rights>2021. The Authors.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000624377600017</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a4028-faa82cc8bf3124fc815d873e4a6f8de2b77d179f9e0ac99e9d6caedd195ed3c03</citedby><cites>FETCH-LOGICAL-a4028-faa82cc8bf3124fc815d873e4a6f8de2b77d179f9e0ac99e9d6caedd195ed3c03</cites><orcidid>0000-0001-7007-4222 ; 0000-0002-8598-0815 ; 0000-0002-6087-6149 ; 0000-0001-9265-8931 ; 0000-0001-9790-2972 ; 0000-0001-8644-8903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020JE006662$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020JE006662$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,1419,1435,27933,27934,39267,45583,45584,46418,46842</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03365672$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajšić, A.</creatorcontrib><creatorcontrib>Miljković, K.</creatorcontrib><creatorcontrib>Collins, G. S.</creatorcontrib><creatorcontrib>Wünnemann, K.</creatorcontrib><creatorcontrib>Daubar, I. J.</creatorcontrib><creatorcontrib>Wójcicka, N.</creatorcontrib><creatorcontrib>Wieczorek, M. A.</creatorcontrib><title>Seismic Efficiency for Simple Crater Formation in the Martian Top Crust Analog</title><title>Journal of geophysical research. Planets</title><addtitle>J GEOPHYS RES-PLANET</addtitle><description>The first seismometer operating on the surface of another planet was deployed by the NASA InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission to Mars. It gives us an opportunity to investigate the seismicity of Mars, including any seismic activity caused by small meteorite bombardment. Detectability of impact generated seismic signals is closely related to the seismic efficiency, defined as the fraction of the impactor's kinetic energy transferred into the seismic energy in a target medium. This work investigated the seismic efficiency of the Martian near surface associated with small meteorite impacts on Mars. We used the iSALE‐2D (Impact‐Simplified Arbitrary Lagrangian Eulerian) shock physics code to simulate the formation of the meter‐size impact craters, and we used a recently formed 1.5 m diameter crater as a case study. The Martian crust was simulated as unfractured nonporous bedrock, fractured bedrock with 25% porosity, and highly porous regolith with 44% and 65% porosity. We used appropriate strength and porosity models defined in previous works, and we identified that the seismic efficiency is very sensitive to the speed of sound and elastic threshold in the target medium. We constrained the value of the impact‐related seismic efficiency to be between the order of ∼10‐7 to 10‐6 for the regolith and ∼10‐4 to 10‐3 for the bedrock. For new impacts occurring on Mars, this work can help understand the near‐surface properties of the Martian crust, and it contributes to the understanding of impact detectability via seismic signals as a function of the target media.
Plain Language Summary
Impact cratering is a common geological process on solid planetary bodies. When impact occurs, it releases shock waves into the target medium. The impactor's kinetic energy is spent on internal energy change (heating), plastic (irreversible) and elastic (reversible) deformation in the target. Seismic efficiency describes how much of the impact's kinetic energy is transferred into seismic energy. Having estimates for the values of the seismic efficiency in such events can help in further describing the properties of the Martian surface, particularly if impact conditions are known. In this work, we are using the iSALE‐2D (Impact‐Simplified Arbitrary Lagrangian Eulerian) shock physics code to simulate meter‐size crater formation on Mars. Our results show that the pressure wave behaves differently in different target properties. The numerical simulation results showed that the seismic efficiency spans 2 orders of magnitude, for the investigated crater size range and target analog for the Martian bedrock and regolith.
Key Points
Seismic efficiency decreases with the increase of porosity
Seismic efficiency is ∼8 × 10‐4 in bedrock and ∼4 × 10‐7 to ∼4 × 10‐6 in highly porous regolith, for Martian simulants
Pressure propagation is significantly dependent on the target's crushing strength, elastic threshold and speed sound, and resolution</description><subject>Bedrock</subject><subject>Bombardment</subject><subject>Earth Sciences</subject><subject>Efficiency</subject><subject>Elastic deformation</subject><subject>Elastic waves</subject><subject>Energy</subject><subject>Geochemistry & Geophysics</subject><subject>Geodesy</subject><subject>Geological processes</subject><subject>Heat transport</subject><subject>impact cratering</subject><subject>InSight mission</subject><subject>Internal energy</subject><subject>Investigations</subject><subject>iSALE‐2D code</subject><subject>Kinetic energy</subject><subject>Mars</subject><subject>Mars craters</subject><subject>Mars surface</subject><subject>Mathematical models</subject><subject>Meteorite collisions</subject><subject>Meteorite impacts</subject><subject>Meteorite impacts on Mars</subject><subject>Meteors & meteorites</subject><subject>numerical modeling</subject><subject>Numerical simulations</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Planetology</subject><subject>Porosity</subject><subject>Properties (attributes)</subject><subject>Regolith</subject><subject>Science & Technology</subject><subject>Sciences of the Universe</subject><subject>Seismic activity</subject><subject>seismic efficiency</subject><subject>Seismic energy</subject><subject>Seismicity</subject><subject>Seismographs</subject><subject>Seismometers</subject><subject>Shock waves</subject><subject>Simulation</subject><subject>Surface properties</subject><issn>2169-9097</issn><issn>2169-9100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkEtLAzEQxxdRUNSbHyDgSbSax24ex7LUF1XBxzmk2YlGtpuabJV-e9NWxZM4lxmG338YfkVxQPApwVSdUUzx9QhjzjndKHYo4WqgCMab3zNWYrvYT-kV55J5RdhOcfsAPk29RSPnvPXQ2QVyIaIHP521gOpoeojoPMSp6X3okO9Q_wLoxsTemw49hllm5qlHw8604Xmv2HKmTbD_1XeLp_PRY305GN9dXNXD8cCUmMqBM0ZSa-XEMUJLZyWpGikYlIY72QCdCNEQoZwCbKxSoBpuDTQNURU0zGK2Wxyt776YVs-in5q40MF4fTkc6-UOM8YrLug7yezhmp3F8DaH1OvXMI_53aRpqRipKBcsUydrysaQUgT3c5ZgvRSsfwvO-PEa_4BJcGllDn4iWTCnJROC54mITMv_07XvV67rMO_6HGVfUd_C4s-n9PXF_YiSSkr2CS8tm0w</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Rajšić, A.</creator><creator>Miljković, K.</creator><creator>Collins, G. S.</creator><creator>Wünnemann, K.</creator><creator>Daubar, I. J.</creator><creator>Wójcicka, N.</creator><creator>Wieczorek, M. A.</creator><general>Amer Geophysical Union</general><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>24P</scope><scope>WIN</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7007-4222</orcidid><orcidid>https://orcid.org/0000-0002-8598-0815</orcidid><orcidid>https://orcid.org/0000-0002-6087-6149</orcidid><orcidid>https://orcid.org/0000-0001-9265-8931</orcidid><orcidid>https://orcid.org/0000-0001-9790-2972</orcidid><orcidid>https://orcid.org/0000-0001-8644-8903</orcidid></search><sort><creationdate>202102</creationdate><title>Seismic Efficiency for Simple Crater Formation in the Martian Top Crust Analog</title><author>Rajšić, A. ; Miljković, K. ; Collins, G. S. ; Wünnemann, K. ; Daubar, I. J. ; Wójcicka, N. ; Wieczorek, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4028-faa82cc8bf3124fc815d873e4a6f8de2b77d179f9e0ac99e9d6caedd195ed3c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bedrock</topic><topic>Bombardment</topic><topic>Earth Sciences</topic><topic>Efficiency</topic><topic>Elastic deformation</topic><topic>Elastic waves</topic><topic>Energy</topic><topic>Geochemistry & Geophysics</topic><topic>Geodesy</topic><topic>Geological processes</topic><topic>Heat transport</topic><topic>impact cratering</topic><topic>InSight mission</topic><topic>Internal energy</topic><topic>Investigations</topic><topic>iSALE‐2D code</topic><topic>Kinetic energy</topic><topic>Mars</topic><topic>Mars craters</topic><topic>Mars surface</topic><topic>Mathematical models</topic><topic>Meteorite collisions</topic><topic>Meteorite impacts</topic><topic>Meteorite impacts on Mars</topic><topic>Meteors & meteorites</topic><topic>numerical modeling</topic><topic>Numerical simulations</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Planetology</topic><topic>Porosity</topic><topic>Properties (attributes)</topic><topic>Regolith</topic><topic>Science & Technology</topic><topic>Sciences of the Universe</topic><topic>Seismic activity</topic><topic>seismic efficiency</topic><topic>Seismic energy</topic><topic>Seismicity</topic><topic>Seismographs</topic><topic>Seismometers</topic><topic>Shock waves</topic><topic>Simulation</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajšić, A.</creatorcontrib><creatorcontrib>Miljković, K.</creatorcontrib><creatorcontrib>Collins, G. S.</creatorcontrib><creatorcontrib>Wünnemann, K.</creatorcontrib><creatorcontrib>Daubar, I. J.</creatorcontrib><creatorcontrib>Wójcicka, N.</creatorcontrib><creatorcontrib>Wieczorek, M. A.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Free Content</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajšić, A.</au><au>Miljković, K.</au><au>Collins, G. S.</au><au>Wünnemann, K.</au><au>Daubar, I. J.</au><au>Wójcicka, N.</au><au>Wieczorek, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seismic Efficiency for Simple Crater Formation in the Martian Top Crust Analog</atitle><jtitle>Journal of geophysical research. Planets</jtitle><stitle>J GEOPHYS RES-PLANET</stitle><date>2021-02</date><risdate>2021</risdate><volume>126</volume><issue>2</issue><epage>n/a</epage><artnum>2020</artnum><issn>2169-9097</issn><eissn>2169-9100</eissn><abstract>The first seismometer operating on the surface of another planet was deployed by the NASA InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission to Mars. It gives us an opportunity to investigate the seismicity of Mars, including any seismic activity caused by small meteorite bombardment. Detectability of impact generated seismic signals is closely related to the seismic efficiency, defined as the fraction of the impactor's kinetic energy transferred into the seismic energy in a target medium. This work investigated the seismic efficiency of the Martian near surface associated with small meteorite impacts on Mars. We used the iSALE‐2D (Impact‐Simplified Arbitrary Lagrangian Eulerian) shock physics code to simulate the formation of the meter‐size impact craters, and we used a recently formed 1.5 m diameter crater as a case study. The Martian crust was simulated as unfractured nonporous bedrock, fractured bedrock with 25% porosity, and highly porous regolith with 44% and 65% porosity. We used appropriate strength and porosity models defined in previous works, and we identified that the seismic efficiency is very sensitive to the speed of sound and elastic threshold in the target medium. We constrained the value of the impact‐related seismic efficiency to be between the order of ∼10‐7 to 10‐6 for the regolith and ∼10‐4 to 10‐3 for the bedrock. For new impacts occurring on Mars, this work can help understand the near‐surface properties of the Martian crust, and it contributes to the understanding of impact detectability via seismic signals as a function of the target media.
Plain Language Summary
Impact cratering is a common geological process on solid planetary bodies. When impact occurs, it releases shock waves into the target medium. The impactor's kinetic energy is spent on internal energy change (heating), plastic (irreversible) and elastic (reversible) deformation in the target. Seismic efficiency describes how much of the impact's kinetic energy is transferred into seismic energy. Having estimates for the values of the seismic efficiency in such events can help in further describing the properties of the Martian surface, particularly if impact conditions are known. In this work, we are using the iSALE‐2D (Impact‐Simplified Arbitrary Lagrangian Eulerian) shock physics code to simulate meter‐size crater formation on Mars. Our results show that the pressure wave behaves differently in different target properties. The numerical simulation results showed that the seismic efficiency spans 2 orders of magnitude, for the investigated crater size range and target analog for the Martian bedrock and regolith.
Key Points
Seismic efficiency decreases with the increase of porosity
Seismic efficiency is ∼8 × 10‐4 in bedrock and ∼4 × 10‐7 to ∼4 × 10‐6 in highly porous regolith, for Martian simulants
Pressure propagation is significantly dependent on the target's crushing strength, elastic threshold and speed sound, and resolution</abstract><cop>WASHINGTON</cop><pub>Amer Geophysical Union</pub><doi>10.1029/2020JE006662</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7007-4222</orcidid><orcidid>https://orcid.org/0000-0002-8598-0815</orcidid><orcidid>https://orcid.org/0000-0002-6087-6149</orcidid><orcidid>https://orcid.org/0000-0001-9265-8931</orcidid><orcidid>https://orcid.org/0000-0001-9790-2972</orcidid><orcidid>https://orcid.org/0000-0001-8644-8903</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9097 |
ispartof | Journal of geophysical research. Planets, 2021-02, Vol.126 (2), p.n/a, Article 2020 |
issn | 2169-9097 2169-9100 |
language | eng |
recordid | cdi_proquest_journals_2493152673 |
source | Access via Wiley Online Library; Wiley Free Content; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | Bedrock Bombardment Earth Sciences Efficiency Elastic deformation Elastic waves Energy Geochemistry & Geophysics Geodesy Geological processes Heat transport impact cratering InSight mission Internal energy Investigations iSALE‐2D code Kinetic energy Mars Mars craters Mars surface Mathematical models Meteorite collisions Meteorite impacts Meteorite impacts on Mars Meteors & meteorites numerical modeling Numerical simulations Physical Sciences Physics Planetology Porosity Properties (attributes) Regolith Science & Technology Sciences of the Universe Seismic activity seismic efficiency Seismic energy Seismicity Seismographs Seismometers Shock waves Simulation Surface properties |
title | Seismic Efficiency for Simple Crater Formation in the Martian Top Crust Analog |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T17%3A35%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seismic%20Efficiency%20for%20Simple%20Crater%20Formation%20in%20the%20Martian%20Top%20Crust%20Analog&rft.jtitle=Journal%20of%20geophysical%20research.%20Planets&rft.au=Raj%C5%A1i%C4%87,%20A.&rft.date=2021-02&rft.volume=126&rft.issue=2&rft.epage=n/a&rft.artnum=2020&rft.issn=2169-9097&rft.eissn=2169-9100&rft_id=info:doi/10.1029/2020JE006662&rft_dat=%3Cproquest_hal_p%3E2493152673%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493152673&rft_id=info:pmid/&rfr_iscdi=true |