Fault-Tolerant Covering Problems in Metric Spaces

In this article, we study some fault-tolerant covering problems in metric spaces. In the metric multi-cover problem (MMC), we are given two point sets Y (servers) and X (clients) in an arbitrary metric space ( X ∪ Y , d ) , a positive integer k that represents the coverage demand of each client, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2021-02, Vol.83 (2), p.413-446
Hauptverfasser: Bhowmick, Santanu, Inamdar, Tanmay, Varadarajan, Kasturi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 446
container_issue 2
container_start_page 413
container_title Algorithmica
container_volume 83
creator Bhowmick, Santanu
Inamdar, Tanmay
Varadarajan, Kasturi
description In this article, we study some fault-tolerant covering problems in metric spaces. In the metric multi-cover problem (MMC), we are given two point sets Y (servers) and X (clients) in an arbitrary metric space ( X ∪ Y , d ) , a positive integer k that represents the coverage demand of each client, and a constant α ≥ 1 . Each server can host a single ball of arbitrary radius centered on it. Each client x ∈ X needs to be covered by at least k such balls centered on servers. The objective function that we wish to minimize is the sum of the α -th powers of the radii of the balls. We also study some non-trivial generalizations of the MMC, such as (a) the non-uniform MMC , where we allow client-specific demands, and (b) the t - MMC , where we require the number of open servers to be at most some given integer t . We present the first constant approximations for these fault-tolerant covering problems. Our algorithms are based on the following paradigm: for each of the three problems, we present an efficient algorithm that reduces the problem to several instances of the corresponding 1-covering problem, where the coverage demand of each client is 1. The reductions preserve optimality up to a multiplicative constant factor. Applying known constant factor approximation algorithms for 1-covering, we obtain our results for the MMC and these generalizations.
doi_str_mv 10.1007/s00453-020-00762-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493118075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493118075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2d30dceb091285dd60fbfbde9e62c095ba8abea9c6707622356adb9e0565dbd93</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz9FJ0qTNURbXFVYUXM8hf6bSpdvWpCvst7drBW-ehoH33sz7EXLN4JYBFHcJIJeCAgc6rorTwwmZsVxwCjJnp2QGrChprlhxTi5S2gIwXmg1I2xp981AN12D0bZDtui-MNbtR_YaO9fgLmV1mz3jEGufvfXWY7okZ5VtEl79zjl5Xz5sFiu6fnl8WtyvqRdMD5QHAcGjA814KUNQULnKBdSouActnS2tQ6u9Ko4PcyGVDU4jSCWDC1rMyc2U28fuc49pMNtuH9vxpOG5FoyVUMhRxSeVj11KESvTx3pn48EwMEc0ZkJjRjTmB405jCYxmVJ_7IrxL_of1zf7cmaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493118075</pqid></control><display><type>article</type><title>Fault-Tolerant Covering Problems in Metric Spaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Bhowmick, Santanu ; Inamdar, Tanmay ; Varadarajan, Kasturi</creator><creatorcontrib>Bhowmick, Santanu ; Inamdar, Tanmay ; Varadarajan, Kasturi</creatorcontrib><description>In this article, we study some fault-tolerant covering problems in metric spaces. In the metric multi-cover problem (MMC), we are given two point sets Y (servers) and X (clients) in an arbitrary metric space ( X ∪ Y , d ) , a positive integer k that represents the coverage demand of each client, and a constant α ≥ 1 . Each server can host a single ball of arbitrary radius centered on it. Each client x ∈ X needs to be covered by at least k such balls centered on servers. The objective function that we wish to minimize is the sum of the α -th powers of the radii of the balls. We also study some non-trivial generalizations of the MMC, such as (a) the non-uniform MMC , where we allow client-specific demands, and (b) the t - MMC , where we require the number of open servers to be at most some given integer t . We present the first constant approximations for these fault-tolerant covering problems. Our algorithms are based on the following paradigm: for each of the three problems, we present an efficient algorithm that reduces the problem to several instances of the corresponding 1-covering problem, where the coverage demand of each client is 1. The reductions preserve optimality up to a multiplicative constant factor. Applying known constant factor approximation algorithms for 1-covering, we obtain our results for the MMC and these generalizations.</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-020-00762-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Fault tolerance ; Integers ; Mathematics of Computing ; Metric space ; Servers ; Theory of Computation</subject><ispartof>Algorithmica, 2021-02, Vol.83 (2), p.413-446</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2d30dceb091285dd60fbfbde9e62c095ba8abea9c6707622356adb9e0565dbd93</citedby><cites>FETCH-LOGICAL-c319t-2d30dceb091285dd60fbfbde9e62c095ba8abea9c6707622356adb9e0565dbd93</cites><orcidid>0000-0002-0184-5932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-020-00762-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-020-00762-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bhowmick, Santanu</creatorcontrib><creatorcontrib>Inamdar, Tanmay</creatorcontrib><creatorcontrib>Varadarajan, Kasturi</creatorcontrib><title>Fault-Tolerant Covering Problems in Metric Spaces</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>In this article, we study some fault-tolerant covering problems in metric spaces. In the metric multi-cover problem (MMC), we are given two point sets Y (servers) and X (clients) in an arbitrary metric space ( X ∪ Y , d ) , a positive integer k that represents the coverage demand of each client, and a constant α ≥ 1 . Each server can host a single ball of arbitrary radius centered on it. Each client x ∈ X needs to be covered by at least k such balls centered on servers. The objective function that we wish to minimize is the sum of the α -th powers of the radii of the balls. We also study some non-trivial generalizations of the MMC, such as (a) the non-uniform MMC , where we allow client-specific demands, and (b) the t - MMC , where we require the number of open servers to be at most some given integer t . We present the first constant approximations for these fault-tolerant covering problems. Our algorithms are based on the following paradigm: for each of the three problems, we present an efficient algorithm that reduces the problem to several instances of the corresponding 1-covering problem, where the coverage demand of each client is 1. The reductions preserve optimality up to a multiplicative constant factor. Applying known constant factor approximation algorithms for 1-covering, we obtain our results for the MMC and these generalizations.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Fault tolerance</subject><subject>Integers</subject><subject>Mathematics of Computing</subject><subject>Metric space</subject><subject>Servers</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz9FJ0qTNURbXFVYUXM8hf6bSpdvWpCvst7drBW-ehoH33sz7EXLN4JYBFHcJIJeCAgc6rorTwwmZsVxwCjJnp2QGrChprlhxTi5S2gIwXmg1I2xp981AN12D0bZDtui-MNbtR_YaO9fgLmV1mz3jEGufvfXWY7okZ5VtEl79zjl5Xz5sFiu6fnl8WtyvqRdMD5QHAcGjA814KUNQULnKBdSouActnS2tQ6u9Ko4PcyGVDU4jSCWDC1rMyc2U28fuc49pMNtuH9vxpOG5FoyVUMhRxSeVj11KESvTx3pn48EwMEc0ZkJjRjTmB405jCYxmVJ_7IrxL_of1zf7cmaQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Bhowmick, Santanu</creator><creator>Inamdar, Tanmay</creator><creator>Varadarajan, Kasturi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0184-5932</orcidid></search><sort><creationdate>20210201</creationdate><title>Fault-Tolerant Covering Problems in Metric Spaces</title><author>Bhowmick, Santanu ; Inamdar, Tanmay ; Varadarajan, Kasturi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2d30dceb091285dd60fbfbde9e62c095ba8abea9c6707622356adb9e0565dbd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Fault tolerance</topic><topic>Integers</topic><topic>Mathematics of Computing</topic><topic>Metric space</topic><topic>Servers</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhowmick, Santanu</creatorcontrib><creatorcontrib>Inamdar, Tanmay</creatorcontrib><creatorcontrib>Varadarajan, Kasturi</creatorcontrib><collection>CrossRef</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhowmick, Santanu</au><au>Inamdar, Tanmay</au><au>Varadarajan, Kasturi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault-Tolerant Covering Problems in Metric Spaces</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>83</volume><issue>2</issue><spage>413</spage><epage>446</epage><pages>413-446</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>In this article, we study some fault-tolerant covering problems in metric spaces. In the metric multi-cover problem (MMC), we are given two point sets Y (servers) and X (clients) in an arbitrary metric space ( X ∪ Y , d ) , a positive integer k that represents the coverage demand of each client, and a constant α ≥ 1 . Each server can host a single ball of arbitrary radius centered on it. Each client x ∈ X needs to be covered by at least k such balls centered on servers. The objective function that we wish to minimize is the sum of the α -th powers of the radii of the balls. We also study some non-trivial generalizations of the MMC, such as (a) the non-uniform MMC , where we allow client-specific demands, and (b) the t - MMC , where we require the number of open servers to be at most some given integer t . We present the first constant approximations for these fault-tolerant covering problems. Our algorithms are based on the following paradigm: for each of the three problems, we present an efficient algorithm that reduces the problem to several instances of the corresponding 1-covering problem, where the coverage demand of each client is 1. The reductions preserve optimality up to a multiplicative constant factor. Applying known constant factor approximation algorithms for 1-covering, we obtain our results for the MMC and these generalizations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-020-00762-y</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-0184-5932</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0178-4617
ispartof Algorithmica, 2021-02, Vol.83 (2), p.413-446
issn 0178-4617
1432-0541
language eng
recordid cdi_proquest_journals_2493118075
source Springer Nature - Complete Springer Journals
subjects Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Fault tolerance
Integers
Mathematics of Computing
Metric space
Servers
Theory of Computation
title Fault-Tolerant Covering Problems in Metric Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault-Tolerant%20Covering%20Problems%20in%20Metric%20Spaces&rft.jtitle=Algorithmica&rft.au=Bhowmick,%20Santanu&rft.date=2021-02-01&rft.volume=83&rft.issue=2&rft.spage=413&rft.epage=446&rft.pages=413-446&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-020-00762-y&rft_dat=%3Cproquest_cross%3E2493118075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493118075&rft_id=info:pmid/&rfr_iscdi=true