Tracing trophic pathways through the marine ecosystem of Rapa Nui (Easter Island)

The structure of food webs provides important insight into biodiversity, organic matter (OM) pathways, and ecosystem functioning. Stable isotope analysis (δ13C and δ15N) was used to characterize the trophic structure and the main OM pathways supporting food webs in the Rapa Nui coastal marine ecosys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aquatic conservation 2021-02, Vol.31 (2), p.304-323
Hauptverfasser: Zapata‐Hernández, Germán, Sellanes, Javier, Letourneur, Yves, Harrod, Chris, Morales, Naiti A., Plaza, Paula, Meerhoff, Erika, Yannicelli, Beatriz, Carrasco, Sergio A., Hinojosa, Ivan, Gaymer, Carlos F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 323
container_issue 2
container_start_page 304
container_title Aquatic conservation
container_volume 31
creator Zapata‐Hernández, Germán
Sellanes, Javier
Letourneur, Yves
Harrod, Chris
Morales, Naiti A.
Plaza, Paula
Meerhoff, Erika
Yannicelli, Beatriz
Carrasco, Sergio A.
Hinojosa, Ivan
Gaymer, Carlos F.
description The structure of food webs provides important insight into biodiversity, organic matter (OM) pathways, and ecosystem functioning. Stable isotope analysis (δ13C and δ15N) was used to characterize the trophic structure and the main OM pathways supporting food webs in the Rapa Nui coastal marine ecosystem. The trophic position of consumers and isotopic niche metrics were estimated for different assemblages (i.e. mesozooplankton, emergent zooplankton, reef invertebrates, reef fishes, pelagic fishes, and seabirds). Furthermore, the relative importance of different OM sources (i.e. macroalgae, zooxanthellate corals, and particulate OM [POM]) was assessed for heterotrophic consumers using Bayesian mixing model (MixSIAR). Results show a clear pattern of 13C and 15N enrichment from small‐sized pelagic and benthic invertebrates, to reef and pelagic fishes, and seabirds. Most invertebrates were classified as primary consumers, reef fishes as secondary consumers and pelagic predators and seabirds as tertiary and quaternary consumers. Isotopic niche metrics indicate a low trophic diversity for pelagic assemblages (mesozooplankton and pelagic fishes), in contrast to reef fauna (invertebrates and fishes), whose higher trophic diversity suggest the exploitation of a wider range of trophic resources. Overlapping of standard ellipses areas between reef invertebrates and reef fishes indicates that both assemblages could be sharing trophic resources. Mixing models results indicate that POM is the main trophic pathway for mesozooplankton, macroalgae (Rhodophyta) for emergent zooplankton, and a mix of coral‐derived OM and Rhodophyta for coral reef assemblages such as macrobenthos and reef invertebrates. In contrast, POM contribution was notably more important for some pelagic fishes and seabirds from upper trophic levels. This study provides key elements for conservation efforts on coral reefs, management planning and full‐implementation of the recently created Rapa Nui Multiple Use Marine Protected Area.
doi_str_mv 10.1002/aqc.3500
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2493023102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493023102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2930-4cbf93abf49fae31f1ef3d5a47f15530263e1d06299f72fb371efc7a5fd97dfd3</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoOKfgTwj4Mh86b5KmIY9jTB0MZTKfQ5Yma8fWdknL6L83db76cDmXy8c9nIPQI4EpAaAv-mSmjANcoREBKRMQnF8PO6eJyAi7RXch7AFAZiQbofXGa1NWO9z6uilKgxvdFmfdB9wWvu52RVSLj9qXlcXW1KEPrT3i2uEv3Wj80ZV4stDx5vEyHHSVP9-jG6cPwT786Rh9vy428_dk9fm2nM9WiaGSQZKarZNMb10qnbaMOGIdy7lOhSOcM6AZsySHjErpBHVbJiJghOYulyJ3ORujp8vfxtenzoZW7evOV9FS0TQ6UEbijNHkQhlfh-CtU40vY5xeEVBDYSoWpobCIppc0HN5sP2_nJqt57_8DzHUa-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493023102</pqid></control><display><type>article</type><title>Tracing trophic pathways through the marine ecosystem of Rapa Nui (Easter Island)</title><source>Wiley Journals</source><creator>Zapata‐Hernández, Germán ; Sellanes, Javier ; Letourneur, Yves ; Harrod, Chris ; Morales, Naiti A. ; Plaza, Paula ; Meerhoff, Erika ; Yannicelli, Beatriz ; Carrasco, Sergio A. ; Hinojosa, Ivan ; Gaymer, Carlos F.</creator><creatorcontrib>Zapata‐Hernández, Germán ; Sellanes, Javier ; Letourneur, Yves ; Harrod, Chris ; Morales, Naiti A. ; Plaza, Paula ; Meerhoff, Erika ; Yannicelli, Beatriz ; Carrasco, Sergio A. ; Hinojosa, Ivan ; Gaymer, Carlos F.</creatorcontrib><description>The structure of food webs provides important insight into biodiversity, organic matter (OM) pathways, and ecosystem functioning. Stable isotope analysis (δ13C and δ15N) was used to characterize the trophic structure and the main OM pathways supporting food webs in the Rapa Nui coastal marine ecosystem. The trophic position of consumers and isotopic niche metrics were estimated for different assemblages (i.e. mesozooplankton, emergent zooplankton, reef invertebrates, reef fishes, pelagic fishes, and seabirds). Furthermore, the relative importance of different OM sources (i.e. macroalgae, zooxanthellate corals, and particulate OM [POM]) was assessed for heterotrophic consumers using Bayesian mixing model (MixSIAR). Results show a clear pattern of 13C and 15N enrichment from small‐sized pelagic and benthic invertebrates, to reef and pelagic fishes, and seabirds. Most invertebrates were classified as primary consumers, reef fishes as secondary consumers and pelagic predators and seabirds as tertiary and quaternary consumers. Isotopic niche metrics indicate a low trophic diversity for pelagic assemblages (mesozooplankton and pelagic fishes), in contrast to reef fauna (invertebrates and fishes), whose higher trophic diversity suggest the exploitation of a wider range of trophic resources. Overlapping of standard ellipses areas between reef invertebrates and reef fishes indicates that both assemblages could be sharing trophic resources. Mixing models results indicate that POM is the main trophic pathway for mesozooplankton, macroalgae (Rhodophyta) for emergent zooplankton, and a mix of coral‐derived OM and Rhodophyta for coral reef assemblages such as macrobenthos and reef invertebrates. In contrast, POM contribution was notably more important for some pelagic fishes and seabirds from upper trophic levels. This study provides key elements for conservation efforts on coral reefs, management planning and full‐implementation of the recently created Rapa Nui Multiple Use Marine Protected Area.</description><identifier>ISSN: 1052-7613</identifier><identifier>EISSN: 1099-0755</identifier><identifier>DOI: 10.1002/aqc.3500</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Algae ; Aquatic birds ; Bayesian analysis ; Benthic fauna ; Benthos ; Biodiversity ; Coastal ecosystems ; Consumers ; Coral reefs ; Corals ; cryptic fauna ; Ecosystems ; Exploitation ; Food chains ; food web ; Food webs ; Invertebrates ; Management planning ; Marine ecosystems ; Marine fishes ; Marine invertebrates ; Marine parks ; Marine protected areas ; Mathematical models ; mixing models ; Niches ; Nitrogen isotopes ; Organic matter ; organic matter fluxes ; Pelagic fish ; Plankton ; Predators ; Probability theory ; Protected areas ; Quaternary ; Resources ; Rhodophyta ; Seabirds ; Seaweeds ; Stable isotopes ; subtropical South Pacific ; Tertiary ; Trophic levels ; trophic position ; Trophic structure ; Zoobenthos ; Zooplankton</subject><ispartof>Aquatic conservation, 2021-02, Vol.31 (2), p.304-323</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2930-4cbf93abf49fae31f1ef3d5a47f15530263e1d06299f72fb371efc7a5fd97dfd3</citedby><cites>FETCH-LOGICAL-c2930-4cbf93abf49fae31f1ef3d5a47f15530263e1d06299f72fb371efc7a5fd97dfd3</cites><orcidid>0000-0003-3157-1976 ; 0000-0003-4395-9505 ; 0000-0003-1348-2056 ; 0000-0002-8179-4222 ; 0000-0002-9752-4374 ; 0000-0003-3245-9118 ; 0000-0002-6942-0762 ; 0000-0002-5353-1556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faqc.3500$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faqc.3500$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zapata‐Hernández, Germán</creatorcontrib><creatorcontrib>Sellanes, Javier</creatorcontrib><creatorcontrib>Letourneur, Yves</creatorcontrib><creatorcontrib>Harrod, Chris</creatorcontrib><creatorcontrib>Morales, Naiti A.</creatorcontrib><creatorcontrib>Plaza, Paula</creatorcontrib><creatorcontrib>Meerhoff, Erika</creatorcontrib><creatorcontrib>Yannicelli, Beatriz</creatorcontrib><creatorcontrib>Carrasco, Sergio A.</creatorcontrib><creatorcontrib>Hinojosa, Ivan</creatorcontrib><creatorcontrib>Gaymer, Carlos F.</creatorcontrib><title>Tracing trophic pathways through the marine ecosystem of Rapa Nui (Easter Island)</title><title>Aquatic conservation</title><description>The structure of food webs provides important insight into biodiversity, organic matter (OM) pathways, and ecosystem functioning. Stable isotope analysis (δ13C and δ15N) was used to characterize the trophic structure and the main OM pathways supporting food webs in the Rapa Nui coastal marine ecosystem. The trophic position of consumers and isotopic niche metrics were estimated for different assemblages (i.e. mesozooplankton, emergent zooplankton, reef invertebrates, reef fishes, pelagic fishes, and seabirds). Furthermore, the relative importance of different OM sources (i.e. macroalgae, zooxanthellate corals, and particulate OM [POM]) was assessed for heterotrophic consumers using Bayesian mixing model (MixSIAR). Results show a clear pattern of 13C and 15N enrichment from small‐sized pelagic and benthic invertebrates, to reef and pelagic fishes, and seabirds. Most invertebrates were classified as primary consumers, reef fishes as secondary consumers and pelagic predators and seabirds as tertiary and quaternary consumers. Isotopic niche metrics indicate a low trophic diversity for pelagic assemblages (mesozooplankton and pelagic fishes), in contrast to reef fauna (invertebrates and fishes), whose higher trophic diversity suggest the exploitation of a wider range of trophic resources. Overlapping of standard ellipses areas between reef invertebrates and reef fishes indicates that both assemblages could be sharing trophic resources. Mixing models results indicate that POM is the main trophic pathway for mesozooplankton, macroalgae (Rhodophyta) for emergent zooplankton, and a mix of coral‐derived OM and Rhodophyta for coral reef assemblages such as macrobenthos and reef invertebrates. In contrast, POM contribution was notably more important for some pelagic fishes and seabirds from upper trophic levels. This study provides key elements for conservation efforts on coral reefs, management planning and full‐implementation of the recently created Rapa Nui Multiple Use Marine Protected Area.</description><subject>Algae</subject><subject>Aquatic birds</subject><subject>Bayesian analysis</subject><subject>Benthic fauna</subject><subject>Benthos</subject><subject>Biodiversity</subject><subject>Coastal ecosystems</subject><subject>Consumers</subject><subject>Coral reefs</subject><subject>Corals</subject><subject>cryptic fauna</subject><subject>Ecosystems</subject><subject>Exploitation</subject><subject>Food chains</subject><subject>food web</subject><subject>Food webs</subject><subject>Invertebrates</subject><subject>Management planning</subject><subject>Marine ecosystems</subject><subject>Marine fishes</subject><subject>Marine invertebrates</subject><subject>Marine parks</subject><subject>Marine protected areas</subject><subject>Mathematical models</subject><subject>mixing models</subject><subject>Niches</subject><subject>Nitrogen isotopes</subject><subject>Organic matter</subject><subject>organic matter fluxes</subject><subject>Pelagic fish</subject><subject>Plankton</subject><subject>Predators</subject><subject>Probability theory</subject><subject>Protected areas</subject><subject>Quaternary</subject><subject>Resources</subject><subject>Rhodophyta</subject><subject>Seabirds</subject><subject>Seaweeds</subject><subject>Stable isotopes</subject><subject>subtropical South Pacific</subject><subject>Tertiary</subject><subject>Trophic levels</subject><subject>trophic position</subject><subject>Trophic structure</subject><subject>Zoobenthos</subject><subject>Zooplankton</subject><issn>1052-7613</issn><issn>1099-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAUhYMoOKfgTwj4Mh86b5KmIY9jTB0MZTKfQ5Yma8fWdknL6L83db76cDmXy8c9nIPQI4EpAaAv-mSmjANcoREBKRMQnF8PO6eJyAi7RXch7AFAZiQbofXGa1NWO9z6uilKgxvdFmfdB9wWvu52RVSLj9qXlcXW1KEPrT3i2uEv3Wj80ZV4stDx5vEyHHSVP9-jG6cPwT786Rh9vy428_dk9fm2nM9WiaGSQZKarZNMb10qnbaMOGIdy7lOhSOcM6AZsySHjErpBHVbJiJghOYulyJ3ORujp8vfxtenzoZW7evOV9FS0TQ6UEbijNHkQhlfh-CtU40vY5xeEVBDYSoWpobCIppc0HN5sP2_nJqt57_8DzHUa-g</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Zapata‐Hernández, Germán</creator><creator>Sellanes, Javier</creator><creator>Letourneur, Yves</creator><creator>Harrod, Chris</creator><creator>Morales, Naiti A.</creator><creator>Plaza, Paula</creator><creator>Meerhoff, Erika</creator><creator>Yannicelli, Beatriz</creator><creator>Carrasco, Sergio A.</creator><creator>Hinojosa, Ivan</creator><creator>Gaymer, Carlos F.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-3157-1976</orcidid><orcidid>https://orcid.org/0000-0003-4395-9505</orcidid><orcidid>https://orcid.org/0000-0003-1348-2056</orcidid><orcidid>https://orcid.org/0000-0002-8179-4222</orcidid><orcidid>https://orcid.org/0000-0002-9752-4374</orcidid><orcidid>https://orcid.org/0000-0003-3245-9118</orcidid><orcidid>https://orcid.org/0000-0002-6942-0762</orcidid><orcidid>https://orcid.org/0000-0002-5353-1556</orcidid></search><sort><creationdate>202102</creationdate><title>Tracing trophic pathways through the marine ecosystem of Rapa Nui (Easter Island)</title><author>Zapata‐Hernández, Germán ; Sellanes, Javier ; Letourneur, Yves ; Harrod, Chris ; Morales, Naiti A. ; Plaza, Paula ; Meerhoff, Erika ; Yannicelli, Beatriz ; Carrasco, Sergio A. ; Hinojosa, Ivan ; Gaymer, Carlos F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2930-4cbf93abf49fae31f1ef3d5a47f15530263e1d06299f72fb371efc7a5fd97dfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algae</topic><topic>Aquatic birds</topic><topic>Bayesian analysis</topic><topic>Benthic fauna</topic><topic>Benthos</topic><topic>Biodiversity</topic><topic>Coastal ecosystems</topic><topic>Consumers</topic><topic>Coral reefs</topic><topic>Corals</topic><topic>cryptic fauna</topic><topic>Ecosystems</topic><topic>Exploitation</topic><topic>Food chains</topic><topic>food web</topic><topic>Food webs</topic><topic>Invertebrates</topic><topic>Management planning</topic><topic>Marine ecosystems</topic><topic>Marine fishes</topic><topic>Marine invertebrates</topic><topic>Marine parks</topic><topic>Marine protected areas</topic><topic>Mathematical models</topic><topic>mixing models</topic><topic>Niches</topic><topic>Nitrogen isotopes</topic><topic>Organic matter</topic><topic>organic matter fluxes</topic><topic>Pelagic fish</topic><topic>Plankton</topic><topic>Predators</topic><topic>Probability theory</topic><topic>Protected areas</topic><topic>Quaternary</topic><topic>Resources</topic><topic>Rhodophyta</topic><topic>Seabirds</topic><topic>Seaweeds</topic><topic>Stable isotopes</topic><topic>subtropical South Pacific</topic><topic>Tertiary</topic><topic>Trophic levels</topic><topic>trophic position</topic><topic>Trophic structure</topic><topic>Zoobenthos</topic><topic>Zooplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zapata‐Hernández, Germán</creatorcontrib><creatorcontrib>Sellanes, Javier</creatorcontrib><creatorcontrib>Letourneur, Yves</creatorcontrib><creatorcontrib>Harrod, Chris</creatorcontrib><creatorcontrib>Morales, Naiti A.</creatorcontrib><creatorcontrib>Plaza, Paula</creatorcontrib><creatorcontrib>Meerhoff, Erika</creatorcontrib><creatorcontrib>Yannicelli, Beatriz</creatorcontrib><creatorcontrib>Carrasco, Sergio A.</creatorcontrib><creatorcontrib>Hinojosa, Ivan</creatorcontrib><creatorcontrib>Gaymer, Carlos F.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Aquatic conservation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zapata‐Hernández, Germán</au><au>Sellanes, Javier</au><au>Letourneur, Yves</au><au>Harrod, Chris</au><au>Morales, Naiti A.</au><au>Plaza, Paula</au><au>Meerhoff, Erika</au><au>Yannicelli, Beatriz</au><au>Carrasco, Sergio A.</au><au>Hinojosa, Ivan</au><au>Gaymer, Carlos F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracing trophic pathways through the marine ecosystem of Rapa Nui (Easter Island)</atitle><jtitle>Aquatic conservation</jtitle><date>2021-02</date><risdate>2021</risdate><volume>31</volume><issue>2</issue><spage>304</spage><epage>323</epage><pages>304-323</pages><issn>1052-7613</issn><eissn>1099-0755</eissn><abstract>The structure of food webs provides important insight into biodiversity, organic matter (OM) pathways, and ecosystem functioning. Stable isotope analysis (δ13C and δ15N) was used to characterize the trophic structure and the main OM pathways supporting food webs in the Rapa Nui coastal marine ecosystem. The trophic position of consumers and isotopic niche metrics were estimated for different assemblages (i.e. mesozooplankton, emergent zooplankton, reef invertebrates, reef fishes, pelagic fishes, and seabirds). Furthermore, the relative importance of different OM sources (i.e. macroalgae, zooxanthellate corals, and particulate OM [POM]) was assessed for heterotrophic consumers using Bayesian mixing model (MixSIAR). Results show a clear pattern of 13C and 15N enrichment from small‐sized pelagic and benthic invertebrates, to reef and pelagic fishes, and seabirds. Most invertebrates were classified as primary consumers, reef fishes as secondary consumers and pelagic predators and seabirds as tertiary and quaternary consumers. Isotopic niche metrics indicate a low trophic diversity for pelagic assemblages (mesozooplankton and pelagic fishes), in contrast to reef fauna (invertebrates and fishes), whose higher trophic diversity suggest the exploitation of a wider range of trophic resources. Overlapping of standard ellipses areas between reef invertebrates and reef fishes indicates that both assemblages could be sharing trophic resources. Mixing models results indicate that POM is the main trophic pathway for mesozooplankton, macroalgae (Rhodophyta) for emergent zooplankton, and a mix of coral‐derived OM and Rhodophyta for coral reef assemblages such as macrobenthos and reef invertebrates. In contrast, POM contribution was notably more important for some pelagic fishes and seabirds from upper trophic levels. This study provides key elements for conservation efforts on coral reefs, management planning and full‐implementation of the recently created Rapa Nui Multiple Use Marine Protected Area.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aqc.3500</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3157-1976</orcidid><orcidid>https://orcid.org/0000-0003-4395-9505</orcidid><orcidid>https://orcid.org/0000-0003-1348-2056</orcidid><orcidid>https://orcid.org/0000-0002-8179-4222</orcidid><orcidid>https://orcid.org/0000-0002-9752-4374</orcidid><orcidid>https://orcid.org/0000-0003-3245-9118</orcidid><orcidid>https://orcid.org/0000-0002-6942-0762</orcidid><orcidid>https://orcid.org/0000-0002-5353-1556</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1052-7613
ispartof Aquatic conservation, 2021-02, Vol.31 (2), p.304-323
issn 1052-7613
1099-0755
language eng
recordid cdi_proquest_journals_2493023102
source Wiley Journals
subjects Algae
Aquatic birds
Bayesian analysis
Benthic fauna
Benthos
Biodiversity
Coastal ecosystems
Consumers
Coral reefs
Corals
cryptic fauna
Ecosystems
Exploitation
Food chains
food web
Food webs
Invertebrates
Management planning
Marine ecosystems
Marine fishes
Marine invertebrates
Marine parks
Marine protected areas
Mathematical models
mixing models
Niches
Nitrogen isotopes
Organic matter
organic matter fluxes
Pelagic fish
Plankton
Predators
Probability theory
Protected areas
Quaternary
Resources
Rhodophyta
Seabirds
Seaweeds
Stable isotopes
subtropical South Pacific
Tertiary
Trophic levels
trophic position
Trophic structure
Zoobenthos
Zooplankton
title Tracing trophic pathways through the marine ecosystem of Rapa Nui (Easter Island)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracing%20trophic%20pathways%20through%20the%20marine%20ecosystem%20of%20Rapa%20Nui%20(Easter%20Island)&rft.jtitle=Aquatic%20conservation&rft.au=Zapata%E2%80%90Hern%C3%A1ndez,%20Germ%C3%A1n&rft.date=2021-02&rft.volume=31&rft.issue=2&rft.spage=304&rft.epage=323&rft.pages=304-323&rft.issn=1052-7613&rft.eissn=1099-0755&rft_id=info:doi/10.1002/aqc.3500&rft_dat=%3Cproquest_cross%3E2493023102%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493023102&rft_id=info:pmid/&rfr_iscdi=true