Aescin - a natural soap for the formation of lipid nanodiscs with tunable size

The saponin β-aescin from the seed extract of the horse chestnut tree Aesculus hippocastanum has demonstrated a beneficial role in clinical therapy which is in part related to its strong interaction with biological membranes. In this context the present work investigates the self-assembly of nm-size...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2021-02, Vol.17 (7), p.1888-19
Hauptverfasser: Geisler, Ramsia, Pedersen, Martin Cramer, Preisig, Natalie, Hannappel, Yvonne, Prévost, Sylvain, Dattani, Rajeev, Arleth, Lise, Hellweg, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 7
container_start_page 1888
container_title Soft matter
container_volume 17
creator Geisler, Ramsia
Pedersen, Martin Cramer
Preisig, Natalie
Hannappel, Yvonne
Prévost, Sylvain
Dattani, Rajeev
Arleth, Lise
Hellweg, Thomas
description The saponin β-aescin from the seed extract of the horse chestnut tree Aesculus hippocastanum has demonstrated a beneficial role in clinical therapy which is in part related to its strong interaction with biological membranes. In this context the present work investigates the self-assembly of nm-sized discoidal lipid nanoparticles composed of β-aescin and the phospholipid 1,2-dimyristoyl- sn-glycero -3-phosphocholine (DMPC). The discoidal lipid nanoparticles reassemble from small discs into larger discs, ribbons and finally stacks of sheets upon heating from gel-phase to fluid phase DMPC. The morphological transition of the lipid nano-particles is mainly triggered by the phospholipid phase state change. The final morphology depends on the phospholipid-to-saponin ratio and the actual temperature. The study is conducted by small-angle X-ray scattering (SAXS) and transmission (TEM) and freeze fracture electron microscopy (FFEM) are used to cover larger length scales. Two different models, representing a disc and ribbon-like shape are applied to the SAXS data, evaluating possible geometries and molecular mixing of the nano-particles. The stacked sheets are analysed by the Caillé theory. The article discusses the temperature-dependent reorganization of beta-aescin stabilized lipid nanodiscs from smaller, to larger discs, ribbons and finally to stacks of sheets.
doi_str_mv 10.1039/d0sm02043e
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2492918146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476125084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-8b9b90d38312223deb6aa481a7c65ce065b315311dc690079d3116d90c0a28773</originalsourceid><addsrcrecordid>eNpd0d9LwzAQB_AgipvTF9-VgC8iVC9NmqaPY84fMPVBBd9KmqSso21m0iL615u5OcGnO7gPx_E9hI4JXBKg2ZUG30AMjJodNCQpYxEXTOxue_o2QAfeLwCoYITvowGljIBIxBA9jo1XVYsjLHEru97JGnsrl7i0Dndzs6qN7CrbYlviulpWOrjW6sorjz-qbo67vpVFbbCvvswh2itl7c3Rpo7Q6830ZXIXzZ5u7yfjWaQYSbpIFFmRgaaCkjiOqTYFl5IJIlPFE2WAJwUlCSVEK54BpJkOPdcZKJCxSFM6QufrvUtn33vju7wJB5m6lq2xvc9jlnISJyBYoGf_6ML2rg3XBZXFGRGE8aAu1ko5670zZb50VSPdZ04gX6WcX8Pzw0_K04BPNyv7ojF6S39jDeBkDZxX2-nfm-g3y9R-zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492918146</pqid></control><display><type>article</type><title>Aescin - a natural soap for the formation of lipid nanodiscs with tunable size</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Geisler, Ramsia ; Pedersen, Martin Cramer ; Preisig, Natalie ; Hannappel, Yvonne ; Prévost, Sylvain ; Dattani, Rajeev ; Arleth, Lise ; Hellweg, Thomas</creator><creatorcontrib>Geisler, Ramsia ; Pedersen, Martin Cramer ; Preisig, Natalie ; Hannappel, Yvonne ; Prévost, Sylvain ; Dattani, Rajeev ; Arleth, Lise ; Hellweg, Thomas</creatorcontrib><description>The saponin β-aescin from the seed extract of the horse chestnut tree Aesculus hippocastanum has demonstrated a beneficial role in clinical therapy which is in part related to its strong interaction with biological membranes. In this context the present work investigates the self-assembly of nm-sized discoidal lipid nanoparticles composed of β-aescin and the phospholipid 1,2-dimyristoyl- sn-glycero -3-phosphocholine (DMPC). The discoidal lipid nanoparticles reassemble from small discs into larger discs, ribbons and finally stacks of sheets upon heating from gel-phase to fluid phase DMPC. The morphological transition of the lipid nano-particles is mainly triggered by the phospholipid phase state change. The final morphology depends on the phospholipid-to-saponin ratio and the actual temperature. The study is conducted by small-angle X-ray scattering (SAXS) and transmission (TEM) and freeze fracture electron microscopy (FFEM) are used to cover larger length scales. Two different models, representing a disc and ribbon-like shape are applied to the SAXS data, evaluating possible geometries and molecular mixing of the nano-particles. The stacked sheets are analysed by the Caillé theory. The article discusses the temperature-dependent reorganization of beta-aescin stabilized lipid nanodiscs from smaller, to larger discs, ribbons and finally to stacks of sheets.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d0sm02043e</identifier><identifier>PMID: 33410858</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biological membranes ; Electron microscopy ; Freeze-fracture ; Lipids ; Nanoparticles ; Phase transitions ; Phosphocholine ; Phospholipids ; Saponins ; Self-assembly ; Sheets ; Small angle X ray scattering ; Strong interactions (field theory) ; X-ray scattering</subject><ispartof>Soft matter, 2021-02, Vol.17 (7), p.1888-19</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-8b9b90d38312223deb6aa481a7c65ce065b315311dc690079d3116d90c0a28773</citedby><cites>FETCH-LOGICAL-c415t-8b9b90d38312223deb6aa481a7c65ce065b315311dc690079d3116d90c0a28773</cites><orcidid>0000-0002-3537-5588 ; 0000-0002-2394-5846 ; 0000-0002-8982-7615 ; 0000-0001-9166-7430 ; 0000-0002-6008-1987 ; 0000-0002-4694-4299 ; 0000-0002-1777-9116</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33410858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geisler, Ramsia</creatorcontrib><creatorcontrib>Pedersen, Martin Cramer</creatorcontrib><creatorcontrib>Preisig, Natalie</creatorcontrib><creatorcontrib>Hannappel, Yvonne</creatorcontrib><creatorcontrib>Prévost, Sylvain</creatorcontrib><creatorcontrib>Dattani, Rajeev</creatorcontrib><creatorcontrib>Arleth, Lise</creatorcontrib><creatorcontrib>Hellweg, Thomas</creatorcontrib><title>Aescin - a natural soap for the formation of lipid nanodiscs with tunable size</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>The saponin β-aescin from the seed extract of the horse chestnut tree Aesculus hippocastanum has demonstrated a beneficial role in clinical therapy which is in part related to its strong interaction with biological membranes. In this context the present work investigates the self-assembly of nm-sized discoidal lipid nanoparticles composed of β-aescin and the phospholipid 1,2-dimyristoyl- sn-glycero -3-phosphocholine (DMPC). The discoidal lipid nanoparticles reassemble from small discs into larger discs, ribbons and finally stacks of sheets upon heating from gel-phase to fluid phase DMPC. The morphological transition of the lipid nano-particles is mainly triggered by the phospholipid phase state change. The final morphology depends on the phospholipid-to-saponin ratio and the actual temperature. The study is conducted by small-angle X-ray scattering (SAXS) and transmission (TEM) and freeze fracture electron microscopy (FFEM) are used to cover larger length scales. Two different models, representing a disc and ribbon-like shape are applied to the SAXS data, evaluating possible geometries and molecular mixing of the nano-particles. The stacked sheets are analysed by the Caillé theory. The article discusses the temperature-dependent reorganization of beta-aescin stabilized lipid nanodiscs from smaller, to larger discs, ribbons and finally to stacks of sheets.</description><subject>Biological membranes</subject><subject>Electron microscopy</subject><subject>Freeze-fracture</subject><subject>Lipids</subject><subject>Nanoparticles</subject><subject>Phase transitions</subject><subject>Phosphocholine</subject><subject>Phospholipids</subject><subject>Saponins</subject><subject>Self-assembly</subject><subject>Sheets</subject><subject>Small angle X ray scattering</subject><subject>Strong interactions (field theory)</subject><subject>X-ray scattering</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0d9LwzAQB_AgipvTF9-VgC8iVC9NmqaPY84fMPVBBd9KmqSso21m0iL615u5OcGnO7gPx_E9hI4JXBKg2ZUG30AMjJodNCQpYxEXTOxue_o2QAfeLwCoYITvowGljIBIxBA9jo1XVYsjLHEru97JGnsrl7i0Dndzs6qN7CrbYlviulpWOrjW6sorjz-qbo67vpVFbbCvvswh2itl7c3Rpo7Q6830ZXIXzZ5u7yfjWaQYSbpIFFmRgaaCkjiOqTYFl5IJIlPFE2WAJwUlCSVEK54BpJkOPdcZKJCxSFM6QufrvUtn33vju7wJB5m6lq2xvc9jlnISJyBYoGf_6ML2rg3XBZXFGRGE8aAu1ko5670zZb50VSPdZ04gX6WcX8Pzw0_K04BPNyv7ojF6S39jDeBkDZxX2-nfm-g3y9R-zg</recordid><startdate>20210221</startdate><enddate>20210221</enddate><creator>Geisler, Ramsia</creator><creator>Pedersen, Martin Cramer</creator><creator>Preisig, Natalie</creator><creator>Hannappel, Yvonne</creator><creator>Prévost, Sylvain</creator><creator>Dattani, Rajeev</creator><creator>Arleth, Lise</creator><creator>Hellweg, Thomas</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3537-5588</orcidid><orcidid>https://orcid.org/0000-0002-2394-5846</orcidid><orcidid>https://orcid.org/0000-0002-8982-7615</orcidid><orcidid>https://orcid.org/0000-0001-9166-7430</orcidid><orcidid>https://orcid.org/0000-0002-6008-1987</orcidid><orcidid>https://orcid.org/0000-0002-4694-4299</orcidid><orcidid>https://orcid.org/0000-0002-1777-9116</orcidid></search><sort><creationdate>20210221</creationdate><title>Aescin - a natural soap for the formation of lipid nanodiscs with tunable size</title><author>Geisler, Ramsia ; Pedersen, Martin Cramer ; Preisig, Natalie ; Hannappel, Yvonne ; Prévost, Sylvain ; Dattani, Rajeev ; Arleth, Lise ; Hellweg, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-8b9b90d38312223deb6aa481a7c65ce065b315311dc690079d3116d90c0a28773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological membranes</topic><topic>Electron microscopy</topic><topic>Freeze-fracture</topic><topic>Lipids</topic><topic>Nanoparticles</topic><topic>Phase transitions</topic><topic>Phosphocholine</topic><topic>Phospholipids</topic><topic>Saponins</topic><topic>Self-assembly</topic><topic>Sheets</topic><topic>Small angle X ray scattering</topic><topic>Strong interactions (field theory)</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geisler, Ramsia</creatorcontrib><creatorcontrib>Pedersen, Martin Cramer</creatorcontrib><creatorcontrib>Preisig, Natalie</creatorcontrib><creatorcontrib>Hannappel, Yvonne</creatorcontrib><creatorcontrib>Prévost, Sylvain</creatorcontrib><creatorcontrib>Dattani, Rajeev</creatorcontrib><creatorcontrib>Arleth, Lise</creatorcontrib><creatorcontrib>Hellweg, Thomas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geisler, Ramsia</au><au>Pedersen, Martin Cramer</au><au>Preisig, Natalie</au><au>Hannappel, Yvonne</au><au>Prévost, Sylvain</au><au>Dattani, Rajeev</au><au>Arleth, Lise</au><au>Hellweg, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aescin - a natural soap for the formation of lipid nanodiscs with tunable size</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2021-02-21</date><risdate>2021</risdate><volume>17</volume><issue>7</issue><spage>1888</spage><epage>19</epage><pages>1888-19</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>The saponin β-aescin from the seed extract of the horse chestnut tree Aesculus hippocastanum has demonstrated a beneficial role in clinical therapy which is in part related to its strong interaction with biological membranes. In this context the present work investigates the self-assembly of nm-sized discoidal lipid nanoparticles composed of β-aescin and the phospholipid 1,2-dimyristoyl- sn-glycero -3-phosphocholine (DMPC). The discoidal lipid nanoparticles reassemble from small discs into larger discs, ribbons and finally stacks of sheets upon heating from gel-phase to fluid phase DMPC. The morphological transition of the lipid nano-particles is mainly triggered by the phospholipid phase state change. The final morphology depends on the phospholipid-to-saponin ratio and the actual temperature. The study is conducted by small-angle X-ray scattering (SAXS) and transmission (TEM) and freeze fracture electron microscopy (FFEM) are used to cover larger length scales. Two different models, representing a disc and ribbon-like shape are applied to the SAXS data, evaluating possible geometries and molecular mixing of the nano-particles. The stacked sheets are analysed by the Caillé theory. The article discusses the temperature-dependent reorganization of beta-aescin stabilized lipid nanodiscs from smaller, to larger discs, ribbons and finally to stacks of sheets.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33410858</pmid><doi>10.1039/d0sm02043e</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3537-5588</orcidid><orcidid>https://orcid.org/0000-0002-2394-5846</orcidid><orcidid>https://orcid.org/0000-0002-8982-7615</orcidid><orcidid>https://orcid.org/0000-0001-9166-7430</orcidid><orcidid>https://orcid.org/0000-0002-6008-1987</orcidid><orcidid>https://orcid.org/0000-0002-4694-4299</orcidid><orcidid>https://orcid.org/0000-0002-1777-9116</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2021-02, Vol.17 (7), p.1888-19
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_journals_2492918146
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Biological membranes
Electron microscopy
Freeze-fracture
Lipids
Nanoparticles
Phase transitions
Phosphocholine
Phospholipids
Saponins
Self-assembly
Sheets
Small angle X ray scattering
Strong interactions (field theory)
X-ray scattering
title Aescin - a natural soap for the formation of lipid nanodiscs with tunable size
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A55%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aescin%20-%20a%20natural%20soap%20for%20the%20formation%20of%20lipid%20nanodiscs%20with%20tunable%20size&rft.jtitle=Soft%20matter&rft.au=Geisler,%20Ramsia&rft.date=2021-02-21&rft.volume=17&rft.issue=7&rft.spage=1888&rft.epage=19&rft.pages=1888-19&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d0sm02043e&rft_dat=%3Cproquest_pubme%3E2476125084%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492918146&rft_id=info:pmid/33410858&rfr_iscdi=true