Structural Changes in Five‐Coordinate Bromido‐bis(o‐iminobenzo‐semiquinonato)iron(III) Complex: Spin‐Crossover or Ligand‐Metal Antiferromagnetic Interactions?
Spin‐crossover metal complexes represent important building blocks for a future generation of electronic and optical devices. Pentacoordinated o‐iminosemiquinonate iron(III) complexes are able to demonstrate spin transitions between high spin (HS) and intermediate spin (IS) states under the influenc...
Gespeichert in:
Veröffentlicht in: | European journal of inorganic chemistry 2021-02, Vol.2021 (8), p.756-762 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 762 |
---|---|
container_issue | 8 |
container_start_page | 756 |
container_title | European journal of inorganic chemistry |
container_volume | 2021 |
creator | Vlasenko, Valery G. Guda, Alexander A. Starikov, Andrey G. Chegerev, Maxim G. Piskunov, Alexander V. Ershova, Irina V. Trigub, Alexander L. Tereshchenko, Andrei A. Rusalev, Yurii V. Kubrin, Stanislav P. Soldatov, Alexander V. |
description | Spin‐crossover metal complexes represent important building blocks for a future generation of electronic and optical devices. Pentacoordinated o‐iminosemiquinonate iron(III) complexes are able to demonstrate spin transitions between high spin (HS) and intermediate spin (IS) states under the influence of temperature or irradiation. Studied (MeimSQ)2FeBr sample showed a broad magnetic transition in the temperature region from 30 K to 300 K. Remarkably that observed behavior of magnetization can be interpreted with two controversial models. In the first model, the values of the effective magnetic moment at low temperature and high temperature can be assigned to the IS and HS magnetic moment of ferric ion coupled antiferromagnetically to radical anion ligands. In the second model, the metal spin on metal center remains IS in the whole temperature interval, while the mutual orientation of three magnetic moments in the molecule undergo changes due to exchange interactions. In this work we apply density functional theory and X‐ray absorption spectroscopy to unravel the origin of magnetic properties of the complex. Temperature‐induced changes of interatomic distances in the first coordination sphere support the second model. Such comprehensive analysis of the magnetic properties makes it possible to shed light on the nature of spin transitions in complexes of transition metals with open‐shell ligands, which are often complicated by strong exchange interactions.
Unusual temperature‐dependent magnetization in the pentacoordinate ferric bis‐o‐iminosemiquinonate complex is not related to the spin crossover. X‐ray absorption spectroscopy quantified structural deformations originating from spin transition upon cooling. DFT simulations in broken symmetry approach explain these geometry changes by strong exchange interactions between spins on Fe and ligands. |
doi_str_mv | 10.1002/ejic.202001033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2492912161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492912161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3173-687ea63d579edb26d1c1c3728f3e00c84e10aff7c78ab2eba9ced8c5efa5a5683</originalsourceid><addsrcrecordid>eNqFUc1u1DAQjhCVKC3Xni1xaQ9ZxnY2P1xQG7WQahGH0nPkOJNlVht7azuFcuoj9Dl4LJ6kjhbBkdPMfPp-NPqS5ITDggOId7ghvRAgADhI-SI55FBVKeSleBn3TGYpr7LyVfLa-w0ASJD5YfLrJrhJh8mpLau_KbNGz8iwK7rH349PtbWuJ6MCsgtnR-ptBDvyp_OkkYzt0PycD48j3U0RiGR7Rs6a06Zpzlhtx90Wf7xnNzsys6Oz3tt7dMw6tqK1Mn1EP2OI-ecm0IAuBqm1wUCaNSagUzqQNf7DcXIwqK3HN3_mUXJ7dfm1_pSuvnxs6vNVqiUvZJqXBapc9suiwr4Tec8117IQ5SARQJcZclDDUOiiVJ3ATlUa-1IvcVBLtcxLeZS83fvunL2b0Id2YydnYmQrskpUXPCcR9Ziz9LzRw6HdudoVO6h5dDOfbRzH-3fPqKg2gu-0xYf_sNuL6-b-p_2GTXcmYY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492912161</pqid></control><display><type>article</type><title>Structural Changes in Five‐Coordinate Bromido‐bis(o‐iminobenzo‐semiquinonato)iron(III) Complex: Spin‐Crossover or Ligand‐Metal Antiferromagnetic Interactions?</title><source>Wiley Journals</source><creator>Vlasenko, Valery G. ; Guda, Alexander A. ; Starikov, Andrey G. ; Chegerev, Maxim G. ; Piskunov, Alexander V. ; Ershova, Irina V. ; Trigub, Alexander L. ; Tereshchenko, Andrei A. ; Rusalev, Yurii V. ; Kubrin, Stanislav P. ; Soldatov, Alexander V.</creator><creatorcontrib>Vlasenko, Valery G. ; Guda, Alexander A. ; Starikov, Andrey G. ; Chegerev, Maxim G. ; Piskunov, Alexander V. ; Ershova, Irina V. ; Trigub, Alexander L. ; Tereshchenko, Andrei A. ; Rusalev, Yurii V. ; Kubrin, Stanislav P. ; Soldatov, Alexander V.</creatorcontrib><description>Spin‐crossover metal complexes represent important building blocks for a future generation of electronic and optical devices. Pentacoordinated o‐iminosemiquinonate iron(III) complexes are able to demonstrate spin transitions between high spin (HS) and intermediate spin (IS) states under the influence of temperature or irradiation. Studied (MeimSQ)2FeBr sample showed a broad magnetic transition in the temperature region from 30 K to 300 K. Remarkably that observed behavior of magnetization can be interpreted with two controversial models. In the first model, the values of the effective magnetic moment at low temperature and high temperature can be assigned to the IS and HS magnetic moment of ferric ion coupled antiferromagnetically to radical anion ligands. In the second model, the metal spin on metal center remains IS in the whole temperature interval, while the mutual orientation of three magnetic moments in the molecule undergo changes due to exchange interactions. In this work we apply density functional theory and X‐ray absorption spectroscopy to unravel the origin of magnetic properties of the complex. Temperature‐induced changes of interatomic distances in the first coordination sphere support the second model. Such comprehensive analysis of the magnetic properties makes it possible to shed light on the nature of spin transitions in complexes of transition metals with open‐shell ligands, which are often complicated by strong exchange interactions.
Unusual temperature‐dependent magnetization in the pentacoordinate ferric bis‐o‐iminosemiquinonate complex is not related to the spin crossover. X‐ray absorption spectroscopy quantified structural deformations originating from spin transition upon cooling. DFT simulations in broken symmetry approach explain these geometry changes by strong exchange interactions between spins on Fe and ligands.</description><identifier>ISSN: 1434-1948</identifier><identifier>EISSN: 1099-0682</identifier><identifier>DOI: 10.1002/ejic.202001033</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Antiferromagnetism ; Coordination compounds ; Crossovers ; Density functional theory ; Electronic devices ; Exchanging ; Ferric ions ; High temperature ; Inorganic chemistry ; Iron ; Ligands ; Low temperature ; Magnetic moments ; Magnetic properties ; Magnetic transitions ; Magnetism ; Metal complexes ; Redox-active ligand ; Spin-crossover ; Transition metals ; Valence-tautomerism ; X-ray spectroscopy</subject><ispartof>European journal of inorganic chemistry, 2021-02, Vol.2021 (8), p.756-762</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3173-687ea63d579edb26d1c1c3728f3e00c84e10aff7c78ab2eba9ced8c5efa5a5683</citedby><cites>FETCH-LOGICAL-c3173-687ea63d579edb26d1c1c3728f3e00c84e10aff7c78ab2eba9ced8c5efa5a5683</cites><orcidid>0000-0002-6449-2791 ; 0000-0003-1823-887X ; 0000-0001-5102-6743 ; 0000-0002-5613-6308 ; 0000-0002-4407-8817 ; 0000-0001-8411-0546 ; 0000-0001-5470-1564 ; 0000-0002-6941-4987 ; 0000-0001-8067-5339 ; 0000-0002-8711-7580 ; 0000-0002-6507-6298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fejic.202001033$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fejic.202001033$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Vlasenko, Valery G.</creatorcontrib><creatorcontrib>Guda, Alexander A.</creatorcontrib><creatorcontrib>Starikov, Andrey G.</creatorcontrib><creatorcontrib>Chegerev, Maxim G.</creatorcontrib><creatorcontrib>Piskunov, Alexander V.</creatorcontrib><creatorcontrib>Ershova, Irina V.</creatorcontrib><creatorcontrib>Trigub, Alexander L.</creatorcontrib><creatorcontrib>Tereshchenko, Andrei A.</creatorcontrib><creatorcontrib>Rusalev, Yurii V.</creatorcontrib><creatorcontrib>Kubrin, Stanislav P.</creatorcontrib><creatorcontrib>Soldatov, Alexander V.</creatorcontrib><title>Structural Changes in Five‐Coordinate Bromido‐bis(o‐iminobenzo‐semiquinonato)iron(III) Complex: Spin‐Crossover or Ligand‐Metal Antiferromagnetic Interactions?</title><title>European journal of inorganic chemistry</title><description>Spin‐crossover metal complexes represent important building blocks for a future generation of electronic and optical devices. Pentacoordinated o‐iminosemiquinonate iron(III) complexes are able to demonstrate spin transitions between high spin (HS) and intermediate spin (IS) states under the influence of temperature or irradiation. Studied (MeimSQ)2FeBr sample showed a broad magnetic transition in the temperature region from 30 K to 300 K. Remarkably that observed behavior of magnetization can be interpreted with two controversial models. In the first model, the values of the effective magnetic moment at low temperature and high temperature can be assigned to the IS and HS magnetic moment of ferric ion coupled antiferromagnetically to radical anion ligands. In the second model, the metal spin on metal center remains IS in the whole temperature interval, while the mutual orientation of three magnetic moments in the molecule undergo changes due to exchange interactions. In this work we apply density functional theory and X‐ray absorption spectroscopy to unravel the origin of magnetic properties of the complex. Temperature‐induced changes of interatomic distances in the first coordination sphere support the second model. Such comprehensive analysis of the magnetic properties makes it possible to shed light on the nature of spin transitions in complexes of transition metals with open‐shell ligands, which are often complicated by strong exchange interactions.
Unusual temperature‐dependent magnetization in the pentacoordinate ferric bis‐o‐iminosemiquinonate complex is not related to the spin crossover. X‐ray absorption spectroscopy quantified structural deformations originating from spin transition upon cooling. DFT simulations in broken symmetry approach explain these geometry changes by strong exchange interactions between spins on Fe and ligands.</description><subject>Antiferromagnetism</subject><subject>Coordination compounds</subject><subject>Crossovers</subject><subject>Density functional theory</subject><subject>Electronic devices</subject><subject>Exchanging</subject><subject>Ferric ions</subject><subject>High temperature</subject><subject>Inorganic chemistry</subject><subject>Iron</subject><subject>Ligands</subject><subject>Low temperature</subject><subject>Magnetic moments</subject><subject>Magnetic properties</subject><subject>Magnetic transitions</subject><subject>Magnetism</subject><subject>Metal complexes</subject><subject>Redox-active ligand</subject><subject>Spin-crossover</subject><subject>Transition metals</subject><subject>Valence-tautomerism</subject><subject>X-ray spectroscopy</subject><issn>1434-1948</issn><issn>1099-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUc1u1DAQjhCVKC3Xni1xaQ9ZxnY2P1xQG7WQahGH0nPkOJNlVht7azuFcuoj9Dl4LJ6kjhbBkdPMfPp-NPqS5ITDggOId7ghvRAgADhI-SI55FBVKeSleBn3TGYpr7LyVfLa-w0ASJD5YfLrJrhJh8mpLau_KbNGz8iwK7rH349PtbWuJ6MCsgtnR-ptBDvyp_OkkYzt0PycD48j3U0RiGR7Rs6a06Zpzlhtx90Wf7xnNzsys6Oz3tt7dMw6tqK1Mn1EP2OI-ecm0IAuBqm1wUCaNSagUzqQNf7DcXIwqK3HN3_mUXJ7dfm1_pSuvnxs6vNVqiUvZJqXBapc9suiwr4Tec8117IQ5SARQJcZclDDUOiiVJ3ATlUa-1IvcVBLtcxLeZS83fvunL2b0Id2YydnYmQrskpUXPCcR9Ziz9LzRw6HdudoVO6h5dDOfbRzH-3fPqKg2gu-0xYf_sNuL6-b-p_2GTXcmYY</recordid><startdate>20210225</startdate><enddate>20210225</enddate><creator>Vlasenko, Valery G.</creator><creator>Guda, Alexander A.</creator><creator>Starikov, Andrey G.</creator><creator>Chegerev, Maxim G.</creator><creator>Piskunov, Alexander V.</creator><creator>Ershova, Irina V.</creator><creator>Trigub, Alexander L.</creator><creator>Tereshchenko, Andrei A.</creator><creator>Rusalev, Yurii V.</creator><creator>Kubrin, Stanislav P.</creator><creator>Soldatov, Alexander V.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6449-2791</orcidid><orcidid>https://orcid.org/0000-0003-1823-887X</orcidid><orcidid>https://orcid.org/0000-0001-5102-6743</orcidid><orcidid>https://orcid.org/0000-0002-5613-6308</orcidid><orcidid>https://orcid.org/0000-0002-4407-8817</orcidid><orcidid>https://orcid.org/0000-0001-8411-0546</orcidid><orcidid>https://orcid.org/0000-0001-5470-1564</orcidid><orcidid>https://orcid.org/0000-0002-6941-4987</orcidid><orcidid>https://orcid.org/0000-0001-8067-5339</orcidid><orcidid>https://orcid.org/0000-0002-8711-7580</orcidid><orcidid>https://orcid.org/0000-0002-6507-6298</orcidid></search><sort><creationdate>20210225</creationdate><title>Structural Changes in Five‐Coordinate Bromido‐bis(o‐iminobenzo‐semiquinonato)iron(III) Complex: Spin‐Crossover or Ligand‐Metal Antiferromagnetic Interactions?</title><author>Vlasenko, Valery G. ; Guda, Alexander A. ; Starikov, Andrey G. ; Chegerev, Maxim G. ; Piskunov, Alexander V. ; Ershova, Irina V. ; Trigub, Alexander L. ; Tereshchenko, Andrei A. ; Rusalev, Yurii V. ; Kubrin, Stanislav P. ; Soldatov, Alexander V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3173-687ea63d579edb26d1c1c3728f3e00c84e10aff7c78ab2eba9ced8c5efa5a5683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antiferromagnetism</topic><topic>Coordination compounds</topic><topic>Crossovers</topic><topic>Density functional theory</topic><topic>Electronic devices</topic><topic>Exchanging</topic><topic>Ferric ions</topic><topic>High temperature</topic><topic>Inorganic chemistry</topic><topic>Iron</topic><topic>Ligands</topic><topic>Low temperature</topic><topic>Magnetic moments</topic><topic>Magnetic properties</topic><topic>Magnetic transitions</topic><topic>Magnetism</topic><topic>Metal complexes</topic><topic>Redox-active ligand</topic><topic>Spin-crossover</topic><topic>Transition metals</topic><topic>Valence-tautomerism</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vlasenko, Valery G.</creatorcontrib><creatorcontrib>Guda, Alexander A.</creatorcontrib><creatorcontrib>Starikov, Andrey G.</creatorcontrib><creatorcontrib>Chegerev, Maxim G.</creatorcontrib><creatorcontrib>Piskunov, Alexander V.</creatorcontrib><creatorcontrib>Ershova, Irina V.</creatorcontrib><creatorcontrib>Trigub, Alexander L.</creatorcontrib><creatorcontrib>Tereshchenko, Andrei A.</creatorcontrib><creatorcontrib>Rusalev, Yurii V.</creatorcontrib><creatorcontrib>Kubrin, Stanislav P.</creatorcontrib><creatorcontrib>Soldatov, Alexander V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>European journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vlasenko, Valery G.</au><au>Guda, Alexander A.</au><au>Starikov, Andrey G.</au><au>Chegerev, Maxim G.</au><au>Piskunov, Alexander V.</au><au>Ershova, Irina V.</au><au>Trigub, Alexander L.</au><au>Tereshchenko, Andrei A.</au><au>Rusalev, Yurii V.</au><au>Kubrin, Stanislav P.</au><au>Soldatov, Alexander V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Changes in Five‐Coordinate Bromido‐bis(o‐iminobenzo‐semiquinonato)iron(III) Complex: Spin‐Crossover or Ligand‐Metal Antiferromagnetic Interactions?</atitle><jtitle>European journal of inorganic chemistry</jtitle><date>2021-02-25</date><risdate>2021</risdate><volume>2021</volume><issue>8</issue><spage>756</spage><epage>762</epage><pages>756-762</pages><issn>1434-1948</issn><eissn>1099-0682</eissn><abstract>Spin‐crossover metal complexes represent important building blocks for a future generation of electronic and optical devices. Pentacoordinated o‐iminosemiquinonate iron(III) complexes are able to demonstrate spin transitions between high spin (HS) and intermediate spin (IS) states under the influence of temperature or irradiation. Studied (MeimSQ)2FeBr sample showed a broad magnetic transition in the temperature region from 30 K to 300 K. Remarkably that observed behavior of magnetization can be interpreted with two controversial models. In the first model, the values of the effective magnetic moment at low temperature and high temperature can be assigned to the IS and HS magnetic moment of ferric ion coupled antiferromagnetically to radical anion ligands. In the second model, the metal spin on metal center remains IS in the whole temperature interval, while the mutual orientation of three magnetic moments in the molecule undergo changes due to exchange interactions. In this work we apply density functional theory and X‐ray absorption spectroscopy to unravel the origin of magnetic properties of the complex. Temperature‐induced changes of interatomic distances in the first coordination sphere support the second model. Such comprehensive analysis of the magnetic properties makes it possible to shed light on the nature of spin transitions in complexes of transition metals with open‐shell ligands, which are often complicated by strong exchange interactions.
Unusual temperature‐dependent magnetization in the pentacoordinate ferric bis‐o‐iminosemiquinonate complex is not related to the spin crossover. X‐ray absorption spectroscopy quantified structural deformations originating from spin transition upon cooling. DFT simulations in broken symmetry approach explain these geometry changes by strong exchange interactions between spins on Fe and ligands.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ejic.202001033</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6449-2791</orcidid><orcidid>https://orcid.org/0000-0003-1823-887X</orcidid><orcidid>https://orcid.org/0000-0001-5102-6743</orcidid><orcidid>https://orcid.org/0000-0002-5613-6308</orcidid><orcidid>https://orcid.org/0000-0002-4407-8817</orcidid><orcidid>https://orcid.org/0000-0001-8411-0546</orcidid><orcidid>https://orcid.org/0000-0001-5470-1564</orcidid><orcidid>https://orcid.org/0000-0002-6941-4987</orcidid><orcidid>https://orcid.org/0000-0001-8067-5339</orcidid><orcidid>https://orcid.org/0000-0002-8711-7580</orcidid><orcidid>https://orcid.org/0000-0002-6507-6298</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-1948 |
ispartof | European journal of inorganic chemistry, 2021-02, Vol.2021 (8), p.756-762 |
issn | 1434-1948 1099-0682 |
language | eng |
recordid | cdi_proquest_journals_2492912161 |
source | Wiley Journals |
subjects | Antiferromagnetism Coordination compounds Crossovers Density functional theory Electronic devices Exchanging Ferric ions High temperature Inorganic chemistry Iron Ligands Low temperature Magnetic moments Magnetic properties Magnetic transitions Magnetism Metal complexes Redox-active ligand Spin-crossover Transition metals Valence-tautomerism X-ray spectroscopy |
title | Structural Changes in Five‐Coordinate Bromido‐bis(o‐iminobenzo‐semiquinonato)iron(III) Complex: Spin‐Crossover or Ligand‐Metal Antiferromagnetic Interactions? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Changes%20in%20Five%E2%80%90Coordinate%20Bromido%E2%80%90bis(o%E2%80%90iminobenzo%E2%80%90semiquinonato)iron(III)%20Complex:%20Spin%E2%80%90Crossover%20or%20Ligand%E2%80%90Metal%20Antiferromagnetic%20Interactions?&rft.jtitle=European%20journal%20of%20inorganic%20chemistry&rft.au=Vlasenko,%20Valery%20G.&rft.date=2021-02-25&rft.volume=2021&rft.issue=8&rft.spage=756&rft.epage=762&rft.pages=756-762&rft.issn=1434-1948&rft.eissn=1099-0682&rft_id=info:doi/10.1002/ejic.202001033&rft_dat=%3Cproquest_cross%3E2492912161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492912161&rft_id=info:pmid/&rfr_iscdi=true |