A Coupled Inductor Based High Step-Up Converter for DC Microgrid Applications
A high gain nonisolated dc-dc converter is proposed for the distributed generation systems. High voltage gain is achieved by integrating different methods with reduced duty ratio. Inductive voltage spikes across MOSFET s are alleviated and stress is reduced with inclusion of a passive-clamp circuit....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2021-06, Vol.68 (6), p.4927-4940 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4940 |
---|---|
container_issue | 6 |
container_start_page | 4927 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 68 |
creator | Kothapalli, Koteswara Rao Ramteke, Manoj R. Suryawanshi, Hiralal Murlidhar Reddi, Naresh Kumar Kalahasthi, Rajesh Babu |
description | A high gain nonisolated dc-dc converter is proposed for the distributed generation systems. High voltage gain is achieved by integrating different methods with reduced duty ratio. Inductive voltage spikes across MOSFET s are alleviated and stress is reduced with inclusion of a passive-clamp circuit. Thus, lower voltage rating (small {R}_{\text{ds}({\textsc {ON}})}) active devices can be adopted. Using this clamp, zero-voltage switching over wide load range is achieved for both the MOSFET s. In addition, leakage energy of the coupled inductor is recycled without using auxiliary switch and thus, the gain get further improved. Zero-current switching is obtained for all the diodes using quasi-resonance principle, which diminishes voltage spikes across the diode caused by the parasitic ringing between leakage inductance and diode's stray capacitance. Therefore, snubbers are not necessary to protect the diodes and to mitigate reverse-recovery losses. Overall efficiency improves because of lower switching and conduction losses of the semiconductor devices. A 600 W prototype working at 75 kHz is built in the laboratory to verify the performance. The peak efficiency is nearly 96.5% and is above 95% for wide load range. |
doi_str_mv | 10.1109/TIE.2020.2992019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2492860255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9089266</ieee_id><sourcerecordid>2492860255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-af4a78822a081afb38e32dff12977f8e65acc8f04afce2e2524753305f0686553</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvAc-fLa5Mmx1mnG2x4cDuH2CazY7Y1aQX_ezM3PD0efL_fe3yE3DKYMAbqYb2YTRAQJqgUAlNnZMQ4zxOlMnlORoC5TAAycUmuQtgBsIwzPiKrKS3aodvbii6aaij71tNHE-I6r7cf9K23XbLpItN8W99bT10Engq6qkvfbn1d0WnX7evS9HXbhGty4cw-2JvTHJPN82xdzJPl68uimC6TEhXrE-Myk0uJaEAy495TaVOsnGOo8txJK7gpS-kgM660aJFjlvM0Be5ASMF5Oib3x97Ot1-DDb3etYNv4kmNmUIpAP8oOFLx1RC8dbrz9afxP5qBPkjTUZo-SNMnaTFyd4zU1tp_XIFUKET6C4KyZmE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492860255</pqid></control><display><type>article</type><title>A Coupled Inductor Based High Step-Up Converter for DC Microgrid Applications</title><source>IEEE Xplore</source><creator>Kothapalli, Koteswara Rao ; Ramteke, Manoj R. ; Suryawanshi, Hiralal Murlidhar ; Reddi, Naresh Kumar ; Kalahasthi, Rajesh Babu</creator><creatorcontrib>Kothapalli, Koteswara Rao ; Ramteke, Manoj R. ; Suryawanshi, Hiralal Murlidhar ; Reddi, Naresh Kumar ; Kalahasthi, Rajesh Babu</creatorcontrib><description><![CDATA[A high gain nonisolated dc-dc converter is proposed for the distributed generation systems. High voltage gain is achieved by integrating different methods with reduced duty ratio. Inductive voltage spikes across MOSFET s are alleviated and stress is reduced with inclusion of a passive-clamp circuit. Thus, lower voltage rating (small <inline-formula><tex-math notation="LaTeX">{R}_{\text{ds}({\textsc {ON}})}</tex-math></inline-formula>) active devices can be adopted. Using this clamp, zero-voltage switching over wide load range is achieved for both the MOSFET s. In addition, leakage energy of the coupled inductor is recycled without using auxiliary switch and thus, the gain get further improved. Zero-current switching is obtained for all the diodes using quasi<inline-formula><tex-math notation="LaTeX">-</tex-math></inline-formula>resonance principle, which diminishes voltage spikes across the diode caused by the parasitic ringing between leakage inductance and diode's stray capacitance. Therefore, snubbers are not necessary to protect the diodes and to mitigate reverse-recovery losses. Overall efficiency improves because of lower switching and conduction losses of the semiconductor devices. A 600 W prototype working at 75 kHz is built in the laboratory to verify the performance. The peak efficiency is nearly 96.5% and is above 95% for wide load range.]]></description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2020.2992019</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitors ; Circuits ; Clamps ; Conduction losses ; Converters ; DC–DC converter ; Diodes ; Distributed generation ; Electrical loads ; High gain ; high step up ; High-voltage techniques ; Inductance ; Inductors ; Leakage ; MOSFET ; MOSFETs ; renewable energy ; Semiconductor devices ; Semiconductor diodes ; Snubbers ; Spikes ; Switches ; Switching ; Voltage gain ; zero-current switching (ZCS) ; zero-voltage switching (ZVS)</subject><ispartof>IEEE transactions on industrial electronics (1982), 2021-06, Vol.68 (6), p.4927-4940</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-af4a78822a081afb38e32dff12977f8e65acc8f04afce2e2524753305f0686553</citedby><cites>FETCH-LOGICAL-c291t-af4a78822a081afb38e32dff12977f8e65acc8f04afce2e2524753305f0686553</cites><orcidid>0000-0001-5860-4593 ; 0000-0001-5036-7992 ; 0000-0003-3213-089X ; 0000-0002-1831-1208 ; 0000-0002-9167-5905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9089266$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9089266$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kothapalli, Koteswara Rao</creatorcontrib><creatorcontrib>Ramteke, Manoj R.</creatorcontrib><creatorcontrib>Suryawanshi, Hiralal Murlidhar</creatorcontrib><creatorcontrib>Reddi, Naresh Kumar</creatorcontrib><creatorcontrib>Kalahasthi, Rajesh Babu</creatorcontrib><title>A Coupled Inductor Based High Step-Up Converter for DC Microgrid Applications</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description><![CDATA[A high gain nonisolated dc-dc converter is proposed for the distributed generation systems. High voltage gain is achieved by integrating different methods with reduced duty ratio. Inductive voltage spikes across MOSFET s are alleviated and stress is reduced with inclusion of a passive-clamp circuit. Thus, lower voltage rating (small <inline-formula><tex-math notation="LaTeX">{R}_{\text{ds}({\textsc {ON}})}</tex-math></inline-formula>) active devices can be adopted. Using this clamp, zero-voltage switching over wide load range is achieved for both the MOSFET s. In addition, leakage energy of the coupled inductor is recycled without using auxiliary switch and thus, the gain get further improved. Zero-current switching is obtained for all the diodes using quasi<inline-formula><tex-math notation="LaTeX">-</tex-math></inline-formula>resonance principle, which diminishes voltage spikes across the diode caused by the parasitic ringing between leakage inductance and diode's stray capacitance. Therefore, snubbers are not necessary to protect the diodes and to mitigate reverse-recovery losses. Overall efficiency improves because of lower switching and conduction losses of the semiconductor devices. A 600 W prototype working at 75 kHz is built in the laboratory to verify the performance. The peak efficiency is nearly 96.5% and is above 95% for wide load range.]]></description><subject>Capacitors</subject><subject>Circuits</subject><subject>Clamps</subject><subject>Conduction losses</subject><subject>Converters</subject><subject>DC–DC converter</subject><subject>Diodes</subject><subject>Distributed generation</subject><subject>Electrical loads</subject><subject>High gain</subject><subject>high step up</subject><subject>High-voltage techniques</subject><subject>Inductance</subject><subject>Inductors</subject><subject>Leakage</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>renewable energy</subject><subject>Semiconductor devices</subject><subject>Semiconductor diodes</subject><subject>Snubbers</subject><subject>Spikes</subject><subject>Switches</subject><subject>Switching</subject><subject>Voltage gain</subject><subject>zero-current switching (ZCS)</subject><subject>zero-voltage switching (ZVS)</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKd3wUvAc-fLa5Mmx1mnG2x4cDuH2CazY7Y1aQX_ezM3PD0efL_fe3yE3DKYMAbqYb2YTRAQJqgUAlNnZMQ4zxOlMnlORoC5TAAycUmuQtgBsIwzPiKrKS3aodvbii6aaij71tNHE-I6r7cf9K23XbLpItN8W99bT10Engq6qkvfbn1d0WnX7evS9HXbhGty4cw-2JvTHJPN82xdzJPl68uimC6TEhXrE-Myk0uJaEAy495TaVOsnGOo8txJK7gpS-kgM660aJFjlvM0Be5ASMF5Oib3x97Ot1-DDb3etYNv4kmNmUIpAP8oOFLx1RC8dbrz9afxP5qBPkjTUZo-SNMnaTFyd4zU1tp_XIFUKET6C4KyZmE</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Kothapalli, Koteswara Rao</creator><creator>Ramteke, Manoj R.</creator><creator>Suryawanshi, Hiralal Murlidhar</creator><creator>Reddi, Naresh Kumar</creator><creator>Kalahasthi, Rajesh Babu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5860-4593</orcidid><orcidid>https://orcid.org/0000-0001-5036-7992</orcidid><orcidid>https://orcid.org/0000-0003-3213-089X</orcidid><orcidid>https://orcid.org/0000-0002-1831-1208</orcidid><orcidid>https://orcid.org/0000-0002-9167-5905</orcidid></search><sort><creationdate>20210601</creationdate><title>A Coupled Inductor Based High Step-Up Converter for DC Microgrid Applications</title><author>Kothapalli, Koteswara Rao ; Ramteke, Manoj R. ; Suryawanshi, Hiralal Murlidhar ; Reddi, Naresh Kumar ; Kalahasthi, Rajesh Babu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-af4a78822a081afb38e32dff12977f8e65acc8f04afce2e2524753305f0686553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Capacitors</topic><topic>Circuits</topic><topic>Clamps</topic><topic>Conduction losses</topic><topic>Converters</topic><topic>DC–DC converter</topic><topic>Diodes</topic><topic>Distributed generation</topic><topic>Electrical loads</topic><topic>High gain</topic><topic>high step up</topic><topic>High-voltage techniques</topic><topic>Inductance</topic><topic>Inductors</topic><topic>Leakage</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>renewable energy</topic><topic>Semiconductor devices</topic><topic>Semiconductor diodes</topic><topic>Snubbers</topic><topic>Spikes</topic><topic>Switches</topic><topic>Switching</topic><topic>Voltage gain</topic><topic>zero-current switching (ZCS)</topic><topic>zero-voltage switching (ZVS)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kothapalli, Koteswara Rao</creatorcontrib><creatorcontrib>Ramteke, Manoj R.</creatorcontrib><creatorcontrib>Suryawanshi, Hiralal Murlidhar</creatorcontrib><creatorcontrib>Reddi, Naresh Kumar</creatorcontrib><creatorcontrib>Kalahasthi, Rajesh Babu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kothapalli, Koteswara Rao</au><au>Ramteke, Manoj R.</au><au>Suryawanshi, Hiralal Murlidhar</au><au>Reddi, Naresh Kumar</au><au>Kalahasthi, Rajesh Babu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Coupled Inductor Based High Step-Up Converter for DC Microgrid Applications</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>68</volume><issue>6</issue><spage>4927</spage><epage>4940</epage><pages>4927-4940</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract><![CDATA[A high gain nonisolated dc-dc converter is proposed for the distributed generation systems. High voltage gain is achieved by integrating different methods with reduced duty ratio. Inductive voltage spikes across MOSFET s are alleviated and stress is reduced with inclusion of a passive-clamp circuit. Thus, lower voltage rating (small <inline-formula><tex-math notation="LaTeX">{R}_{\text{ds}({\textsc {ON}})}</tex-math></inline-formula>) active devices can be adopted. Using this clamp, zero-voltage switching over wide load range is achieved for both the MOSFET s. In addition, leakage energy of the coupled inductor is recycled without using auxiliary switch and thus, the gain get further improved. Zero-current switching is obtained for all the diodes using quasi<inline-formula><tex-math notation="LaTeX">-</tex-math></inline-formula>resonance principle, which diminishes voltage spikes across the diode caused by the parasitic ringing between leakage inductance and diode's stray capacitance. Therefore, snubbers are not necessary to protect the diodes and to mitigate reverse-recovery losses. Overall efficiency improves because of lower switching and conduction losses of the semiconductor devices. A 600 W prototype working at 75 kHz is built in the laboratory to verify the performance. The peak efficiency is nearly 96.5% and is above 95% for wide load range.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2020.2992019</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5860-4593</orcidid><orcidid>https://orcid.org/0000-0001-5036-7992</orcidid><orcidid>https://orcid.org/0000-0003-3213-089X</orcidid><orcidid>https://orcid.org/0000-0002-1831-1208</orcidid><orcidid>https://orcid.org/0000-0002-9167-5905</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2021-06, Vol.68 (6), p.4927-4940 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_journals_2492860255 |
source | IEEE Xplore |
subjects | Capacitors Circuits Clamps Conduction losses Converters DC–DC converter Diodes Distributed generation Electrical loads High gain high step up High-voltage techniques Inductance Inductors Leakage MOSFET MOSFETs renewable energy Semiconductor devices Semiconductor diodes Snubbers Spikes Switches Switching Voltage gain zero-current switching (ZCS) zero-voltage switching (ZVS) |
title | A Coupled Inductor Based High Step-Up Converter for DC Microgrid Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Coupled%20Inductor%20Based%20High%20Step-Up%20Converter%20for%20DC%20Microgrid%20Applications&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Kothapalli,%20Koteswara%20Rao&rft.date=2021-06-01&rft.volume=68&rft.issue=6&rft.spage=4927&rft.epage=4940&rft.pages=4927-4940&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2020.2992019&rft_dat=%3Cproquest_RIE%3E2492860255%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492860255&rft_id=info:pmid/&rft_ieee_id=9089266&rfr_iscdi=true |