A Coupled Inductor Based High Step-Up Converter for DC Microgrid Applications

A high gain nonisolated dc-dc converter is proposed for the distributed generation systems. High voltage gain is achieved by integrating different methods with reduced duty ratio. Inductive voltage spikes across MOSFET s are alleviated and stress is reduced with inclusion of a passive-clamp circuit....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2021-06, Vol.68 (6), p.4927-4940
Hauptverfasser: Kothapalli, Koteswara Rao, Ramteke, Manoj R., Suryawanshi, Hiralal Murlidhar, Reddi, Naresh Kumar, Kalahasthi, Rajesh Babu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4940
container_issue 6
container_start_page 4927
container_title IEEE transactions on industrial electronics (1982)
container_volume 68
creator Kothapalli, Koteswara Rao
Ramteke, Manoj R.
Suryawanshi, Hiralal Murlidhar
Reddi, Naresh Kumar
Kalahasthi, Rajesh Babu
description A high gain nonisolated dc-dc converter is proposed for the distributed generation systems. High voltage gain is achieved by integrating different methods with reduced duty ratio. Inductive voltage spikes across MOSFET s are alleviated and stress is reduced with inclusion of a passive-clamp circuit. Thus, lower voltage rating (small {R}_{\text{ds}({\textsc {ON}})}) active devices can be adopted. Using this clamp, zero-voltage switching over wide load range is achieved for both the MOSFET s. In addition, leakage energy of the coupled inductor is recycled without using auxiliary switch and thus, the gain get further improved. Zero-current switching is obtained for all the diodes using quasi-resonance principle, which diminishes voltage spikes across the diode caused by the parasitic ringing between leakage inductance and diode's stray capacitance. Therefore, snubbers are not necessary to protect the diodes and to mitigate reverse-recovery losses. Overall efficiency improves because of lower switching and conduction losses of the semiconductor devices. A 600 W prototype working at 75 kHz is built in the laboratory to verify the performance. The peak efficiency is nearly 96.5% and is above 95% for wide load range.
doi_str_mv 10.1109/TIE.2020.2992019
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2492860255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9089266</ieee_id><sourcerecordid>2492860255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-af4a78822a081afb38e32dff12977f8e65acc8f04afce2e2524753305f0686553</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvAc-fLa5Mmx1mnG2x4cDuH2CazY7Y1aQX_ezM3PD0efL_fe3yE3DKYMAbqYb2YTRAQJqgUAlNnZMQ4zxOlMnlORoC5TAAycUmuQtgBsIwzPiKrKS3aodvbii6aaij71tNHE-I6r7cf9K23XbLpItN8W99bT10Engq6qkvfbn1d0WnX7evS9HXbhGty4cw-2JvTHJPN82xdzJPl68uimC6TEhXrE-Myk0uJaEAy495TaVOsnGOo8txJK7gpS-kgM660aJFjlvM0Be5ASMF5Oib3x97Ot1-DDb3etYNv4kmNmUIpAP8oOFLx1RC8dbrz9afxP5qBPkjTUZo-SNMnaTFyd4zU1tp_XIFUKET6C4KyZmE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492860255</pqid></control><display><type>article</type><title>A Coupled Inductor Based High Step-Up Converter for DC Microgrid Applications</title><source>IEEE Xplore</source><creator>Kothapalli, Koteswara Rao ; Ramteke, Manoj R. ; Suryawanshi, Hiralal Murlidhar ; Reddi, Naresh Kumar ; Kalahasthi, Rajesh Babu</creator><creatorcontrib>Kothapalli, Koteswara Rao ; Ramteke, Manoj R. ; Suryawanshi, Hiralal Murlidhar ; Reddi, Naresh Kumar ; Kalahasthi, Rajesh Babu</creatorcontrib><description><![CDATA[A high gain nonisolated dc-dc converter is proposed for the distributed generation systems. High voltage gain is achieved by integrating different methods with reduced duty ratio. Inductive voltage spikes across MOSFET s are alleviated and stress is reduced with inclusion of a passive-clamp circuit. Thus, lower voltage rating (small <inline-formula><tex-math notation="LaTeX">{R}_{\text{ds}({\textsc {ON}})}</tex-math></inline-formula>) active devices can be adopted. Using this clamp, zero-voltage switching over wide load range is achieved for both the MOSFET s. In addition, leakage energy of the coupled inductor is recycled without using auxiliary switch and thus, the gain get further improved. Zero-current switching is obtained for all the diodes using quasi<inline-formula><tex-math notation="LaTeX">-</tex-math></inline-formula>resonance principle, which diminishes voltage spikes across the diode caused by the parasitic ringing between leakage inductance and diode's stray capacitance. Therefore, snubbers are not necessary to protect the diodes and to mitigate reverse-recovery losses. Overall efficiency improves because of lower switching and conduction losses of the semiconductor devices. A 600 W prototype working at 75 kHz is built in the laboratory to verify the performance. The peak efficiency is nearly 96.5% and is above 95% for wide load range.]]></description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2020.2992019</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitors ; Circuits ; Clamps ; Conduction losses ; Converters ; DC–DC converter ; Diodes ; Distributed generation ; Electrical loads ; High gain ; high step up ; High-voltage techniques ; Inductance ; Inductors ; Leakage ; MOSFET ; MOSFETs ; renewable energy ; Semiconductor devices ; Semiconductor diodes ; Snubbers ; Spikes ; Switches ; Switching ; Voltage gain ; zero-current switching (ZCS) ; zero-voltage switching (ZVS)</subject><ispartof>IEEE transactions on industrial electronics (1982), 2021-06, Vol.68 (6), p.4927-4940</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-af4a78822a081afb38e32dff12977f8e65acc8f04afce2e2524753305f0686553</citedby><cites>FETCH-LOGICAL-c291t-af4a78822a081afb38e32dff12977f8e65acc8f04afce2e2524753305f0686553</cites><orcidid>0000-0001-5860-4593 ; 0000-0001-5036-7992 ; 0000-0003-3213-089X ; 0000-0002-1831-1208 ; 0000-0002-9167-5905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9089266$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9089266$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kothapalli, Koteswara Rao</creatorcontrib><creatorcontrib>Ramteke, Manoj R.</creatorcontrib><creatorcontrib>Suryawanshi, Hiralal Murlidhar</creatorcontrib><creatorcontrib>Reddi, Naresh Kumar</creatorcontrib><creatorcontrib>Kalahasthi, Rajesh Babu</creatorcontrib><title>A Coupled Inductor Based High Step-Up Converter for DC Microgrid Applications</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description><![CDATA[A high gain nonisolated dc-dc converter is proposed for the distributed generation systems. High voltage gain is achieved by integrating different methods with reduced duty ratio. Inductive voltage spikes across MOSFET s are alleviated and stress is reduced with inclusion of a passive-clamp circuit. Thus, lower voltage rating (small <inline-formula><tex-math notation="LaTeX">{R}_{\text{ds}({\textsc {ON}})}</tex-math></inline-formula>) active devices can be adopted. Using this clamp, zero-voltage switching over wide load range is achieved for both the MOSFET s. In addition, leakage energy of the coupled inductor is recycled without using auxiliary switch and thus, the gain get further improved. Zero-current switching is obtained for all the diodes using quasi<inline-formula><tex-math notation="LaTeX">-</tex-math></inline-formula>resonance principle, which diminishes voltage spikes across the diode caused by the parasitic ringing between leakage inductance and diode's stray capacitance. Therefore, snubbers are not necessary to protect the diodes and to mitigate reverse-recovery losses. Overall efficiency improves because of lower switching and conduction losses of the semiconductor devices. A 600 W prototype working at 75 kHz is built in the laboratory to verify the performance. The peak efficiency is nearly 96.5% and is above 95% for wide load range.]]></description><subject>Capacitors</subject><subject>Circuits</subject><subject>Clamps</subject><subject>Conduction losses</subject><subject>Converters</subject><subject>DC–DC converter</subject><subject>Diodes</subject><subject>Distributed generation</subject><subject>Electrical loads</subject><subject>High gain</subject><subject>high step up</subject><subject>High-voltage techniques</subject><subject>Inductance</subject><subject>Inductors</subject><subject>Leakage</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>renewable energy</subject><subject>Semiconductor devices</subject><subject>Semiconductor diodes</subject><subject>Snubbers</subject><subject>Spikes</subject><subject>Switches</subject><subject>Switching</subject><subject>Voltage gain</subject><subject>zero-current switching (ZCS)</subject><subject>zero-voltage switching (ZVS)</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKd3wUvAc-fLa5Mmx1mnG2x4cDuH2CazY7Y1aQX_ezM3PD0efL_fe3yE3DKYMAbqYb2YTRAQJqgUAlNnZMQ4zxOlMnlORoC5TAAycUmuQtgBsIwzPiKrKS3aodvbii6aaij71tNHE-I6r7cf9K23XbLpItN8W99bT10Engq6qkvfbn1d0WnX7evS9HXbhGty4cw-2JvTHJPN82xdzJPl68uimC6TEhXrE-Myk0uJaEAy495TaVOsnGOo8txJK7gpS-kgM660aJFjlvM0Be5ASMF5Oib3x97Ot1-DDb3etYNv4kmNmUIpAP8oOFLx1RC8dbrz9afxP5qBPkjTUZo-SNMnaTFyd4zU1tp_XIFUKET6C4KyZmE</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Kothapalli, Koteswara Rao</creator><creator>Ramteke, Manoj R.</creator><creator>Suryawanshi, Hiralal Murlidhar</creator><creator>Reddi, Naresh Kumar</creator><creator>Kalahasthi, Rajesh Babu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5860-4593</orcidid><orcidid>https://orcid.org/0000-0001-5036-7992</orcidid><orcidid>https://orcid.org/0000-0003-3213-089X</orcidid><orcidid>https://orcid.org/0000-0002-1831-1208</orcidid><orcidid>https://orcid.org/0000-0002-9167-5905</orcidid></search><sort><creationdate>20210601</creationdate><title>A Coupled Inductor Based High Step-Up Converter for DC Microgrid Applications</title><author>Kothapalli, Koteswara Rao ; Ramteke, Manoj R. ; Suryawanshi, Hiralal Murlidhar ; Reddi, Naresh Kumar ; Kalahasthi, Rajesh Babu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-af4a78822a081afb38e32dff12977f8e65acc8f04afce2e2524753305f0686553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Capacitors</topic><topic>Circuits</topic><topic>Clamps</topic><topic>Conduction losses</topic><topic>Converters</topic><topic>DC–DC converter</topic><topic>Diodes</topic><topic>Distributed generation</topic><topic>Electrical loads</topic><topic>High gain</topic><topic>high step up</topic><topic>High-voltage techniques</topic><topic>Inductance</topic><topic>Inductors</topic><topic>Leakage</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>renewable energy</topic><topic>Semiconductor devices</topic><topic>Semiconductor diodes</topic><topic>Snubbers</topic><topic>Spikes</topic><topic>Switches</topic><topic>Switching</topic><topic>Voltage gain</topic><topic>zero-current switching (ZCS)</topic><topic>zero-voltage switching (ZVS)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kothapalli, Koteswara Rao</creatorcontrib><creatorcontrib>Ramteke, Manoj R.</creatorcontrib><creatorcontrib>Suryawanshi, Hiralal Murlidhar</creatorcontrib><creatorcontrib>Reddi, Naresh Kumar</creatorcontrib><creatorcontrib>Kalahasthi, Rajesh Babu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kothapalli, Koteswara Rao</au><au>Ramteke, Manoj R.</au><au>Suryawanshi, Hiralal Murlidhar</au><au>Reddi, Naresh Kumar</au><au>Kalahasthi, Rajesh Babu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Coupled Inductor Based High Step-Up Converter for DC Microgrid Applications</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>68</volume><issue>6</issue><spage>4927</spage><epage>4940</epage><pages>4927-4940</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract><![CDATA[A high gain nonisolated dc-dc converter is proposed for the distributed generation systems. High voltage gain is achieved by integrating different methods with reduced duty ratio. Inductive voltage spikes across MOSFET s are alleviated and stress is reduced with inclusion of a passive-clamp circuit. Thus, lower voltage rating (small <inline-formula><tex-math notation="LaTeX">{R}_{\text{ds}({\textsc {ON}})}</tex-math></inline-formula>) active devices can be adopted. Using this clamp, zero-voltage switching over wide load range is achieved for both the MOSFET s. In addition, leakage energy of the coupled inductor is recycled without using auxiliary switch and thus, the gain get further improved. Zero-current switching is obtained for all the diodes using quasi<inline-formula><tex-math notation="LaTeX">-</tex-math></inline-formula>resonance principle, which diminishes voltage spikes across the diode caused by the parasitic ringing between leakage inductance and diode's stray capacitance. Therefore, snubbers are not necessary to protect the diodes and to mitigate reverse-recovery losses. Overall efficiency improves because of lower switching and conduction losses of the semiconductor devices. A 600 W prototype working at 75 kHz is built in the laboratory to verify the performance. The peak efficiency is nearly 96.5% and is above 95% for wide load range.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2020.2992019</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5860-4593</orcidid><orcidid>https://orcid.org/0000-0001-5036-7992</orcidid><orcidid>https://orcid.org/0000-0003-3213-089X</orcidid><orcidid>https://orcid.org/0000-0002-1831-1208</orcidid><orcidid>https://orcid.org/0000-0002-9167-5905</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2021-06, Vol.68 (6), p.4927-4940
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_2492860255
source IEEE Xplore
subjects Capacitors
Circuits
Clamps
Conduction losses
Converters
DC–DC converter
Diodes
Distributed generation
Electrical loads
High gain
high step up
High-voltage techniques
Inductance
Inductors
Leakage
MOSFET
MOSFETs
renewable energy
Semiconductor devices
Semiconductor diodes
Snubbers
Spikes
Switches
Switching
Voltage gain
zero-current switching (ZCS)
zero-voltage switching (ZVS)
title A Coupled Inductor Based High Step-Up Converter for DC Microgrid Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Coupled%20Inductor%20Based%20High%20Step-Up%20Converter%20for%20DC%20Microgrid%20Applications&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Kothapalli,%20Koteswara%20Rao&rft.date=2021-06-01&rft.volume=68&rft.issue=6&rft.spage=4927&rft.epage=4940&rft.pages=4927-4940&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2020.2992019&rft_dat=%3Cproquest_RIE%3E2492860255%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492860255&rft_id=info:pmid/&rft_ieee_id=9089266&rfr_iscdi=true