Kalman Filter-Based Data Fusion of Wi-Fi RTT and PDR for Indoor Localization

The Fine Time Measurement (FTM) protocol introduced by IEEE 802.11 includes a new ranging method, named Wi-Fi Round Trip Time (Wi-Fi RTT), which can be used for indoor localization. Pedestrian Dead Reckoning (PDR) can provide accurate pedestrian tracking through inertial sensors in a short time. Inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-03, Vol.21 (6), p.8479-8490
Hauptverfasser: Liu, Xu, Zhou, Baoding, Huang, Panpan, Xue, Weixing, Li, Qingquan, Zhu, Jiasong, Qiu, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8490
container_issue 6
container_start_page 8479
container_title IEEE sensors journal
container_volume 21
creator Liu, Xu
Zhou, Baoding
Huang, Panpan
Xue, Weixing
Li, Qingquan
Zhu, Jiasong
Qiu, Li
description The Fine Time Measurement (FTM) protocol introduced by IEEE 802.11 includes a new ranging method, named Wi-Fi Round Trip Time (Wi-Fi RTT), which can be used for indoor localization. Pedestrian Dead Reckoning (PDR) can provide accurate pedestrian tracking through inertial sensors in a short time. Information fusion of PDR and existing wireless technology is widely used in indoor localization to ensure the robustness and stability. In this paper, we propose a fusion indoor localization method of Wi-Fi RTT and PDR. Firstly, an adaptive filtering system consisting of multiple Extended Kalman Filter (EKF) and a new outlier detection method is proposed to reduce the localization error of Wi-Fi RTT. Secondly, the fusion algorithm based on the Federated Filter (FF) and observability is designed to combine Wi-Fi RTT with PDR. Finally, to further improve the localization performance of the fusion algorithm, a real-time smoothing method with fixed interval is used. We evaluate the proposed method in four different scenarios. The results show that the proposed indoor localization method has better stability and robustness, and the average localization error decreased by 37.4-67.6% compared with the classic EKF-based method.
doi_str_mv 10.1109/JSEN.2021.3050456
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2492856487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9319190</ieee_id><sourcerecordid>2492856487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ecfcc2622ddf378f8cf8fd84fee2d796b5651f3f467b0293e0f5e63eac2be1333</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKd_gHgJeM7Mj6ZJjjpXnRaVOdFbyNIEOrpmJt1B_3pbNjy93-F53w8eAC4JnhCC1c3T--xlQjElE4Y5znh-BEaEc4mIyOTxcDOMMia-TsFZSmuMiRJcjED5bJqNaWFRN52L6M4kV8F70xlY7FIdWhg8_KxRUcPFcglNW8G3-wX0IcJ5W4U-ymBNU_-arofPwYk3TXIXhxyDj2K2nD6i8vVhPr0tkaWKdchZby3NKa0qz4T00nrpK5l552glVL7iOSee-SwXK9w3HPbc5cwZS1eOMMbG4Hq_u43he-dSp9dhF9v-paaZopLnmRQ9RfaUjSGl6Lzexnpj4o8mWA_S9CBND9L0QVrfudp3aufcP68YUURh9gfD12bt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492856487</pqid></control><display><type>article</type><title>Kalman Filter-Based Data Fusion of Wi-Fi RTT and PDR for Indoor Localization</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Xu ; Zhou, Baoding ; Huang, Panpan ; Xue, Weixing ; Li, Qingquan ; Zhu, Jiasong ; Qiu, Li</creator><creatorcontrib>Liu, Xu ; Zhou, Baoding ; Huang, Panpan ; Xue, Weixing ; Li, Qingquan ; Zhu, Jiasong ; Qiu, Li</creatorcontrib><description>The Fine Time Measurement (FTM) protocol introduced by IEEE 802.11 includes a new ranging method, named Wi-Fi Round Trip Time (Wi-Fi RTT), which can be used for indoor localization. Pedestrian Dead Reckoning (PDR) can provide accurate pedestrian tracking through inertial sensors in a short time. Information fusion of PDR and existing wireless technology is widely used in indoor localization to ensure the robustness and stability. In this paper, we propose a fusion indoor localization method of Wi-Fi RTT and PDR. Firstly, an adaptive filtering system consisting of multiple Extended Kalman Filter (EKF) and a new outlier detection method is proposed to reduce the localization error of Wi-Fi RTT. Secondly, the fusion algorithm based on the Federated Filter (FF) and observability is designed to combine Wi-Fi RTT with PDR. Finally, to further improve the localization performance of the fusion algorithm, a real-time smoothing method with fixed interval is used. We evaluate the proposed method in four different scenarios. The results show that the proposed indoor localization method has better stability and robustness, and the average localization error decreased by 37.4-67.6% compared with the classic EKF-based method.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3050456</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; Adaptive systems ; Algorithms ; Data analysis ; Data integration ; Dead reckoning ; Distance measurement ; Estimation ; Extended Kalman filter ; Federated filters ; fixed-interval filter ; indoor localization ; Inertial sensing devices ; Localization ; Localization method ; Location awareness ; Outliers (statistics) ; pedestrian dead reckoning (PDR) ; Robustness ; Sensors ; Smoothing methods ; Stability ; Time measurement ; Wi-Fi round trip time (RTT)/Wi-Fi fine time measurements (FTMs) ; Wireless fidelity</subject><ispartof>IEEE sensors journal, 2021-03, Vol.21 (6), p.8479-8490</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ecfcc2622ddf378f8cf8fd84fee2d796b5651f3f467b0293e0f5e63eac2be1333</citedby><cites>FETCH-LOGICAL-c293t-ecfcc2622ddf378f8cf8fd84fee2d796b5651f3f467b0293e0f5e63eac2be1333</cites><orcidid>0000-0001-7049-4518 ; 0000-0003-4134-8313 ; 0000-0002-2438-6046 ; 0000-0003-4461-8884 ; 0000-0003-1607-2626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9319190$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9319190$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Zhou, Baoding</creatorcontrib><creatorcontrib>Huang, Panpan</creatorcontrib><creatorcontrib>Xue, Weixing</creatorcontrib><creatorcontrib>Li, Qingquan</creatorcontrib><creatorcontrib>Zhu, Jiasong</creatorcontrib><creatorcontrib>Qiu, Li</creatorcontrib><title>Kalman Filter-Based Data Fusion of Wi-Fi RTT and PDR for Indoor Localization</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The Fine Time Measurement (FTM) protocol introduced by IEEE 802.11 includes a new ranging method, named Wi-Fi Round Trip Time (Wi-Fi RTT), which can be used for indoor localization. Pedestrian Dead Reckoning (PDR) can provide accurate pedestrian tracking through inertial sensors in a short time. Information fusion of PDR and existing wireless technology is widely used in indoor localization to ensure the robustness and stability. In this paper, we propose a fusion indoor localization method of Wi-Fi RTT and PDR. Firstly, an adaptive filtering system consisting of multiple Extended Kalman Filter (EKF) and a new outlier detection method is proposed to reduce the localization error of Wi-Fi RTT. Secondly, the fusion algorithm based on the Federated Filter (FF) and observability is designed to combine Wi-Fi RTT with PDR. Finally, to further improve the localization performance of the fusion algorithm, a real-time smoothing method with fixed interval is used. We evaluate the proposed method in four different scenarios. The results show that the proposed indoor localization method has better stability and robustness, and the average localization error decreased by 37.4-67.6% compared with the classic EKF-based method.</description><subject>Adaptive filters</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Data analysis</subject><subject>Data integration</subject><subject>Dead reckoning</subject><subject>Distance measurement</subject><subject>Estimation</subject><subject>Extended Kalman filter</subject><subject>Federated filters</subject><subject>fixed-interval filter</subject><subject>indoor localization</subject><subject>Inertial sensing devices</subject><subject>Localization</subject><subject>Localization method</subject><subject>Location awareness</subject><subject>Outliers (statistics)</subject><subject>pedestrian dead reckoning (PDR)</subject><subject>Robustness</subject><subject>Sensors</subject><subject>Smoothing methods</subject><subject>Stability</subject><subject>Time measurement</subject><subject>Wi-Fi round trip time (RTT)/Wi-Fi fine time measurements (FTMs)</subject><subject>Wireless fidelity</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAYhoMoOKd_gHgJeM7Mj6ZJjjpXnRaVOdFbyNIEOrpmJt1B_3pbNjy93-F53w8eAC4JnhCC1c3T--xlQjElE4Y5znh-BEaEc4mIyOTxcDOMMia-TsFZSmuMiRJcjED5bJqNaWFRN52L6M4kV8F70xlY7FIdWhg8_KxRUcPFcglNW8G3-wX0IcJ5W4U-ymBNU_-arofPwYk3TXIXhxyDj2K2nD6i8vVhPr0tkaWKdchZby3NKa0qz4T00nrpK5l552glVL7iOSee-SwXK9w3HPbc5cwZS1eOMMbG4Hq_u43he-dSp9dhF9v-paaZopLnmRQ9RfaUjSGl6Lzexnpj4o8mWA_S9CBND9L0QVrfudp3aufcP68YUURh9gfD12bt</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Liu, Xu</creator><creator>Zhou, Baoding</creator><creator>Huang, Panpan</creator><creator>Xue, Weixing</creator><creator>Li, Qingquan</creator><creator>Zhu, Jiasong</creator><creator>Qiu, Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7049-4518</orcidid><orcidid>https://orcid.org/0000-0003-4134-8313</orcidid><orcidid>https://orcid.org/0000-0002-2438-6046</orcidid><orcidid>https://orcid.org/0000-0003-4461-8884</orcidid><orcidid>https://orcid.org/0000-0003-1607-2626</orcidid></search><sort><creationdate>20210315</creationdate><title>Kalman Filter-Based Data Fusion of Wi-Fi RTT and PDR for Indoor Localization</title><author>Liu, Xu ; Zhou, Baoding ; Huang, Panpan ; Xue, Weixing ; Li, Qingquan ; Zhu, Jiasong ; Qiu, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ecfcc2622ddf378f8cf8fd84fee2d796b5651f3f467b0293e0f5e63eac2be1333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive filters</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Data analysis</topic><topic>Data integration</topic><topic>Dead reckoning</topic><topic>Distance measurement</topic><topic>Estimation</topic><topic>Extended Kalman filter</topic><topic>Federated filters</topic><topic>fixed-interval filter</topic><topic>indoor localization</topic><topic>Inertial sensing devices</topic><topic>Localization</topic><topic>Localization method</topic><topic>Location awareness</topic><topic>Outliers (statistics)</topic><topic>pedestrian dead reckoning (PDR)</topic><topic>Robustness</topic><topic>Sensors</topic><topic>Smoothing methods</topic><topic>Stability</topic><topic>Time measurement</topic><topic>Wi-Fi round trip time (RTT)/Wi-Fi fine time measurements (FTMs)</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Zhou, Baoding</creatorcontrib><creatorcontrib>Huang, Panpan</creatorcontrib><creatorcontrib>Xue, Weixing</creatorcontrib><creatorcontrib>Li, Qingquan</creatorcontrib><creatorcontrib>Zhu, Jiasong</creatorcontrib><creatorcontrib>Qiu, Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xu</au><au>Zhou, Baoding</au><au>Huang, Panpan</au><au>Xue, Weixing</au><au>Li, Qingquan</au><au>Zhu, Jiasong</au><au>Qiu, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kalman Filter-Based Data Fusion of Wi-Fi RTT and PDR for Indoor Localization</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-03-15</date><risdate>2021</risdate><volume>21</volume><issue>6</issue><spage>8479</spage><epage>8490</epage><pages>8479-8490</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The Fine Time Measurement (FTM) protocol introduced by IEEE 802.11 includes a new ranging method, named Wi-Fi Round Trip Time (Wi-Fi RTT), which can be used for indoor localization. Pedestrian Dead Reckoning (PDR) can provide accurate pedestrian tracking through inertial sensors in a short time. Information fusion of PDR and existing wireless technology is widely used in indoor localization to ensure the robustness and stability. In this paper, we propose a fusion indoor localization method of Wi-Fi RTT and PDR. Firstly, an adaptive filtering system consisting of multiple Extended Kalman Filter (EKF) and a new outlier detection method is proposed to reduce the localization error of Wi-Fi RTT. Secondly, the fusion algorithm based on the Federated Filter (FF) and observability is designed to combine Wi-Fi RTT with PDR. Finally, to further improve the localization performance of the fusion algorithm, a real-time smoothing method with fixed interval is used. We evaluate the proposed method in four different scenarios. The results show that the proposed indoor localization method has better stability and robustness, and the average localization error decreased by 37.4-67.6% compared with the classic EKF-based method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3050456</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7049-4518</orcidid><orcidid>https://orcid.org/0000-0003-4134-8313</orcidid><orcidid>https://orcid.org/0000-0002-2438-6046</orcidid><orcidid>https://orcid.org/0000-0003-4461-8884</orcidid><orcidid>https://orcid.org/0000-0003-1607-2626</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-03, Vol.21 (6), p.8479-8490
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2492856487
source IEEE Electronic Library (IEL)
subjects Adaptive filters
Adaptive systems
Algorithms
Data analysis
Data integration
Dead reckoning
Distance measurement
Estimation
Extended Kalman filter
Federated filters
fixed-interval filter
indoor localization
Inertial sensing devices
Localization
Localization method
Location awareness
Outliers (statistics)
pedestrian dead reckoning (PDR)
Robustness
Sensors
Smoothing methods
Stability
Time measurement
Wi-Fi round trip time (RTT)/Wi-Fi fine time measurements (FTMs)
Wireless fidelity
title Kalman Filter-Based Data Fusion of Wi-Fi RTT and PDR for Indoor Localization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kalman%20Filter-Based%20Data%20Fusion%20of%20Wi-Fi%20RTT%20and%20PDR%20for%20Indoor%20Localization&rft.jtitle=IEEE%20sensors%20journal&rft.au=Liu,%20Xu&rft.date=2021-03-15&rft.volume=21&rft.issue=6&rft.spage=8479&rft.epage=8490&rft.pages=8479-8490&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3050456&rft_dat=%3Cproquest_RIE%3E2492856487%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492856487&rft_id=info:pmid/&rft_ieee_id=9319190&rfr_iscdi=true