Triangulations, order polytopes, and generalized snake posets

This work regards the order polytopes arising from the class of generalized snake posets and their posets of meet-irreducible elements. Among generalized snake posets of the same rank, we characterize those whose order polytopes have minimal and maximal volume. We give a combinatorial characterizati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-04
Hauptverfasser: Matias von Bell, Braun, Benjamin, Hanely, Derek, Serhiyenko, Khrystyna, Vega, Julianne, Vindas-Meléndez, Andrés R, Yip, Martha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Matias von Bell
Braun, Benjamin
Hanely, Derek
Serhiyenko, Khrystyna
Vega, Julianne
Vindas-Meléndez, Andrés R
Yip, Martha
description This work regards the order polytopes arising from the class of generalized snake posets and their posets of meet-irreducible elements. Among generalized snake posets of the same rank, we characterize those whose order polytopes have minimal and maximal volume. We give a combinatorial characterization of the circuits in these order polytopes and then conclude that every triangulation is unimodular. For a generalized snake word, we count the number of flips for the canonical triangulation of these order polytopes. We determine that the flip graph of the order polytope of the poset whose lattice of filters comes from a ladder is the Cayley graph of a symmetric group. Lastly, we introduce an operation on triangulations called twists and prove that twists preserve regular triangulations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2492819387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492819387</sourcerecordid><originalsourceid>FETCH-proquest_journals_24928193873</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_CHi1kG5amx48ieIDei-BbktrSGI2PejrzcEHeBqYmQ3LQMqyUBXAjuVEixACzg3UtczYpQuzttNqdJydpRN3YcDAvTPv6Dwmoe3AJ7QYtJk_OHCy-olpIIx0YNtRG8L8xz073m_d9VH44F4rUuwXtwabUg9VC6pspWrkf9cXwoo4kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492819387</pqid></control><display><type>article</type><title>Triangulations, order polytopes, and generalized snake posets</title><source>Free E- Journals</source><creator>Matias von Bell ; Braun, Benjamin ; Hanely, Derek ; Serhiyenko, Khrystyna ; Vega, Julianne ; Vindas-Meléndez, Andrés R ; Yip, Martha</creator><creatorcontrib>Matias von Bell ; Braun, Benjamin ; Hanely, Derek ; Serhiyenko, Khrystyna ; Vega, Julianne ; Vindas-Meléndez, Andrés R ; Yip, Martha</creatorcontrib><description>This work regards the order polytopes arising from the class of generalized snake posets and their posets of meet-irreducible elements. Among generalized snake posets of the same rank, we characterize those whose order polytopes have minimal and maximal volume. We give a combinatorial characterization of the circuits in these order polytopes and then conclude that every triangulation is unimodular. For a generalized snake word, we count the number of flips for the canonical triangulation of these order polytopes. We determine that the flip graph of the order polytope of the poset whose lattice of filters comes from a ladder is the Cayley graph of a symmetric group. Lastly, we introduce an operation on triangulations called twists and prove that twists preserve regular triangulations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Polytopes ; Set theory ; Triangulation</subject><ispartof>arXiv.org, 2021-04</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Matias von Bell</creatorcontrib><creatorcontrib>Braun, Benjamin</creatorcontrib><creatorcontrib>Hanely, Derek</creatorcontrib><creatorcontrib>Serhiyenko, Khrystyna</creatorcontrib><creatorcontrib>Vega, Julianne</creatorcontrib><creatorcontrib>Vindas-Meléndez, Andrés R</creatorcontrib><creatorcontrib>Yip, Martha</creatorcontrib><title>Triangulations, order polytopes, and generalized snake posets</title><title>arXiv.org</title><description>This work regards the order polytopes arising from the class of generalized snake posets and their posets of meet-irreducible elements. Among generalized snake posets of the same rank, we characterize those whose order polytopes have minimal and maximal volume. We give a combinatorial characterization of the circuits in these order polytopes and then conclude that every triangulation is unimodular. For a generalized snake word, we count the number of flips for the canonical triangulation of these order polytopes. We determine that the flip graph of the order polytope of the poset whose lattice of filters comes from a ladder is the Cayley graph of a symmetric group. Lastly, we introduce an operation on triangulations called twists and prove that twists preserve regular triangulations.</description><subject>Combinatorial analysis</subject><subject>Polytopes</subject><subject>Set theory</subject><subject>Triangulation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikEKwjAQAIMgWLR_CHi1kG5amx48ieIDei-BbktrSGI2PejrzcEHeBqYmQ3LQMqyUBXAjuVEixACzg3UtczYpQuzttNqdJydpRN3YcDAvTPv6Dwmoe3AJ7QYtJk_OHCy-olpIIx0YNtRG8L8xz073m_d9VH44F4rUuwXtwabUg9VC6pspWrkf9cXwoo4kA</recordid><startdate>20210407</startdate><enddate>20210407</enddate><creator>Matias von Bell</creator><creator>Braun, Benjamin</creator><creator>Hanely, Derek</creator><creator>Serhiyenko, Khrystyna</creator><creator>Vega, Julianne</creator><creator>Vindas-Meléndez, Andrés R</creator><creator>Yip, Martha</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210407</creationdate><title>Triangulations, order polytopes, and generalized snake posets</title><author>Matias von Bell ; Braun, Benjamin ; Hanely, Derek ; Serhiyenko, Khrystyna ; Vega, Julianne ; Vindas-Meléndez, Andrés R ; Yip, Martha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24928193873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Combinatorial analysis</topic><topic>Polytopes</topic><topic>Set theory</topic><topic>Triangulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Matias von Bell</creatorcontrib><creatorcontrib>Braun, Benjamin</creatorcontrib><creatorcontrib>Hanely, Derek</creatorcontrib><creatorcontrib>Serhiyenko, Khrystyna</creatorcontrib><creatorcontrib>Vega, Julianne</creatorcontrib><creatorcontrib>Vindas-Meléndez, Andrés R</creatorcontrib><creatorcontrib>Yip, Martha</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matias von Bell</au><au>Braun, Benjamin</au><au>Hanely, Derek</au><au>Serhiyenko, Khrystyna</au><au>Vega, Julianne</au><au>Vindas-Meléndez, Andrés R</au><au>Yip, Martha</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Triangulations, order polytopes, and generalized snake posets</atitle><jtitle>arXiv.org</jtitle><date>2021-04-07</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>This work regards the order polytopes arising from the class of generalized snake posets and their posets of meet-irreducible elements. Among generalized snake posets of the same rank, we characterize those whose order polytopes have minimal and maximal volume. We give a combinatorial characterization of the circuits in these order polytopes and then conclude that every triangulation is unimodular. For a generalized snake word, we count the number of flips for the canonical triangulation of these order polytopes. We determine that the flip graph of the order polytope of the poset whose lattice of filters comes from a ladder is the Cayley graph of a symmetric group. Lastly, we introduce an operation on triangulations called twists and prove that twists preserve regular triangulations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2492819387
source Free E- Journals
subjects Combinatorial analysis
Polytopes
Set theory
Triangulation
title Triangulations, order polytopes, and generalized snake posets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A37%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Triangulations,%20order%20polytopes,%20and%20generalized%20snake%20posets&rft.jtitle=arXiv.org&rft.au=Matias%20von%20Bell&rft.date=2021-04-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2492819387%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492819387&rft_id=info:pmid/&rfr_iscdi=true