An algorithm to find ribbon disks for alternating knots

We describe an algorithm to find ribbon disks for alternating knots, and the results of a computer implementation of this algorithm. The algorithm is underlain by a slice link obstruction coming from Donaldson's diagonalisation theorem. It successfully finds ribbon disks for slice two-bridge kn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
Hauptverfasser: Owens, Brendan, Swenton, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Owens, Brendan
Swenton, Frank
description We describe an algorithm to find ribbon disks for alternating knots, and the results of a computer implementation of this algorithm. The algorithm is underlain by a slice link obstruction coming from Donaldson's diagonalisation theorem. It successfully finds ribbon disks for slice two-bridge knots and for the connected sum of any alternating knot with its reverse mirror, as well as for 662,903 prime alternating knots of 21 or fewer crossings. We also identify some examples of ribbon alternating knots for which the algorithm fails to find ribbon disks, though a related search identifies all such examples known. Combining these searches with known obstructions, we resolve the sliceness of all but 3,276 of the over 1.2 billion prime alternating knots with 21 or fewer crossings.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2492817589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492817589</sourcerecordid><originalsourceid>FETCH-proquest_journals_24928175893</originalsourceid><addsrcrecordid>eNqNy0EOgjAQQNHGxESi3GES1yRlSgWWxmg8gHtSAsUCdrRT7i8LD-Dqb97fiASVyrOqQNyJlHmUUuKpRK1VIsqzBzMPFFx8viASWOc7CK5tyUPneGKwFFYS--BNdH6AyVPkg9haM3Of_roXx9v1cbln70CfpefYjLSsx8wNFjVWeamrWv2nvv8JNc0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492817589</pqid></control><display><type>article</type><title>An algorithm to find ribbon disks for alternating knots</title><source>Free E- Journals</source><creator>Owens, Brendan ; Swenton, Frank</creator><creatorcontrib>Owens, Brendan ; Swenton, Frank</creatorcontrib><description>We describe an algorithm to find ribbon disks for alternating knots, and the results of a computer implementation of this algorithm. The algorithm is underlain by a slice link obstruction coming from Donaldson's diagonalisation theorem. It successfully finds ribbon disks for slice two-bridge knots and for the connected sum of any alternating knot with its reverse mirror, as well as for 662,903 prime alternating knots of 21 or fewer crossings. We also identify some examples of ribbon alternating knots for which the algorithm fails to find ribbon disks, though a related search identifies all such examples known. Combining these searches with known obstructions, we resolve the sliceness of all but 3,276 of the over 1.2 billion prime alternating knots with 21 or fewer crossings.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Disks ; Knots</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Owens, Brendan</creatorcontrib><creatorcontrib>Swenton, Frank</creatorcontrib><title>An algorithm to find ribbon disks for alternating knots</title><title>arXiv.org</title><description>We describe an algorithm to find ribbon disks for alternating knots, and the results of a computer implementation of this algorithm. The algorithm is underlain by a slice link obstruction coming from Donaldson's diagonalisation theorem. It successfully finds ribbon disks for slice two-bridge knots and for the connected sum of any alternating knot with its reverse mirror, as well as for 662,903 prime alternating knots of 21 or fewer crossings. We also identify some examples of ribbon alternating knots for which the algorithm fails to find ribbon disks, though a related search identifies all such examples known. Combining these searches with known obstructions, we resolve the sliceness of all but 3,276 of the over 1.2 billion prime alternating knots with 21 or fewer crossings.</description><subject>Algorithms</subject><subject>Disks</subject><subject>Knots</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNy0EOgjAQQNHGxESi3GES1yRlSgWWxmg8gHtSAsUCdrRT7i8LD-Dqb97fiASVyrOqQNyJlHmUUuKpRK1VIsqzBzMPFFx8viASWOc7CK5tyUPneGKwFFYS--BNdH6AyVPkg9haM3Of_roXx9v1cbln70CfpefYjLSsx8wNFjVWeamrWv2nvv8JNc0</recordid><startdate>20230228</startdate><enddate>20230228</enddate><creator>Owens, Brendan</creator><creator>Swenton, Frank</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230228</creationdate><title>An algorithm to find ribbon disks for alternating knots</title><author>Owens, Brendan ; Swenton, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24928175893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Disks</topic><topic>Knots</topic><toplevel>online_resources</toplevel><creatorcontrib>Owens, Brendan</creatorcontrib><creatorcontrib>Swenton, Frank</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Owens, Brendan</au><au>Swenton, Frank</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An algorithm to find ribbon disks for alternating knots</atitle><jtitle>arXiv.org</jtitle><date>2023-02-28</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We describe an algorithm to find ribbon disks for alternating knots, and the results of a computer implementation of this algorithm. The algorithm is underlain by a slice link obstruction coming from Donaldson's diagonalisation theorem. It successfully finds ribbon disks for slice two-bridge knots and for the connected sum of any alternating knot with its reverse mirror, as well as for 662,903 prime alternating knots of 21 or fewer crossings. We also identify some examples of ribbon alternating knots for which the algorithm fails to find ribbon disks, though a related search identifies all such examples known. Combining these searches with known obstructions, we resolve the sliceness of all but 3,276 of the over 1.2 billion prime alternating knots with 21 or fewer crossings.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2492817589
source Free E- Journals
subjects Algorithms
Disks
Knots
title An algorithm to find ribbon disks for alternating knots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A37%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20algorithm%20to%20find%20ribbon%20disks%20for%20alternating%20knots&rft.jtitle=arXiv.org&rft.au=Owens,%20Brendan&rft.date=2023-02-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2492817589%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492817589&rft_id=info:pmid/&rfr_iscdi=true