Investigation on the equilibrium distribution of methanol in transformer oil-immersed cellulosic insulation
Methanol in oil was used to indirectly evaluate the aging status of cellulosic paper insulation for oil-immersed transformers. However, the distribution of methanol in oil is affected by many factors, not only related to the oil–paper adsorption equilibrium, but also may be affected by the vapor–liq...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2021-02, Vol.28 (3), p.1703-1714 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1714 |
---|---|
container_issue | 3 |
container_start_page | 1703 |
container_title | Cellulose (London) |
container_volume | 28 |
creator | Zheng, Hanbo Shi, Kuikui Yang, Tao Li, Yuquan Zhang, Enze Zhang, Chuansheng Shao, Guangqi Shi, Zhen Zhang, Chaohai |
description | Methanol in oil was used to indirectly evaluate the aging status of cellulosic paper insulation for oil-immersed transformers. However, the distribution of methanol in oil is affected by many factors, not only related to the oil–paper adsorption equilibrium, but also may be affected by the vapor–liquid phase transition. In this study, the adsorption experiments of mineral oil and standard cellulosic Kraft paper for methanol were designed to explore the adsorption equilibrium process at different oil–paper mass ratios under room temperature. The vapor–liquid equilibrium experiments of methanol between oil and gas were carried out to explore the effects of temperature and phase volume ratios. It turned out that: firstly, compared with mineral oil, the Kraft paper has a stronger adsorption capacity for methanol, which makes most of methanol adsorbed in paper when equilibrium at room temperature. Secondly, the increase of oil–paper mass ratios reduces the adsorption of Kraft paper for methanol and makes the equilibrium time longer. Particularly, at a higher oil–paper mass ratio, due to the less paper mass, methanol would “reverse diffusion” from paper to oil standard solution in the early stage of equilibrium. Finally, the presence of methanol in gas phase cannot be ignored. The increase of temperature makes more liquid methanol in oil transferred to the gas phase by the phase transition process, while increasing the oil–gas phase volume ratios in constant volume system can inhibit this process.
Graphic abstract |
doi_str_mv | 10.1007/s10570-020-03608-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2492796915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492796915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-887b8c927c0456802a4aff1128d5f55251637100753318580b47e672bbaa58ae3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA69E8Jo9ZSvFRENwouAuZaaZNzUzaZCL4773tCO6EXBK453y59yB0TfAtwVjeJYK5xCWmUExgVYoTNCNc0lIp-nGKZrgWNbRZfY4uUtpijGtJyQx9Locvm0a3NqMLQwFn3NjC7rPzroku98XKpTG6Jk_9rujtuDFD8IUDbTRD6kLsbSyC86Xr4ZXsqmit99mH5FqQpeyP9Et01hmf7NXvPUfvjw9vi-fy5fVpubh_KVvGxQgTy0a1NZUtrrhQmJrKdB0hVK14xznlRDB52JozRhRXuKmkFZI2jTFcGcvm6Gbi7mLYZ9hOb0OOA3ypaQVciIJwUNFJ1caQUrSd3kXXm_itCdYHvJ5C1RCqPoaqBZjYZEogHtY2_qH_cf0AGbt7fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492796915</pqid></control><display><type>article</type><title>Investigation on the equilibrium distribution of methanol in transformer oil-immersed cellulosic insulation</title><source>Springer journals</source><creator>Zheng, Hanbo ; Shi, Kuikui ; Yang, Tao ; Li, Yuquan ; Zhang, Enze ; Zhang, Chuansheng ; Shao, Guangqi ; Shi, Zhen ; Zhang, Chaohai</creator><creatorcontrib>Zheng, Hanbo ; Shi, Kuikui ; Yang, Tao ; Li, Yuquan ; Zhang, Enze ; Zhang, Chuansheng ; Shao, Guangqi ; Shi, Zhen ; Zhang, Chaohai</creatorcontrib><description>Methanol in oil was used to indirectly evaluate the aging status of cellulosic paper insulation for oil-immersed transformers. However, the distribution of methanol in oil is affected by many factors, not only related to the oil–paper adsorption equilibrium, but also may be affected by the vapor–liquid phase transition. In this study, the adsorption experiments of mineral oil and standard cellulosic Kraft paper for methanol were designed to explore the adsorption equilibrium process at different oil–paper mass ratios under room temperature. The vapor–liquid equilibrium experiments of methanol between oil and gas were carried out to explore the effects of temperature and phase volume ratios. It turned out that: firstly, compared with mineral oil, the Kraft paper has a stronger adsorption capacity for methanol, which makes most of methanol adsorbed in paper when equilibrium at room temperature. Secondly, the increase of oil–paper mass ratios reduces the adsorption of Kraft paper for methanol and makes the equilibrium time longer. Particularly, at a higher oil–paper mass ratio, due to the less paper mass, methanol would “reverse diffusion” from paper to oil standard solution in the early stage of equilibrium. Finally, the presence of methanol in gas phase cannot be ignored. The increase of temperature makes more liquid methanol in oil transferred to the gas phase by the phase transition process, while increasing the oil–gas phase volume ratios in constant volume system can inhibit this process.
Graphic abstract</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-020-03608-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adsorption ; Bioorganic Chemistry ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Equilibrium ; Glass ; Insulation ; Liquid phases ; Liquid-vapor equilibrium ; Mass ratios ; Methanol ; Mineral oils ; Natural Materials ; Organic Chemistry ; Original Research ; Phase transitions ; Physical Chemistry ; Polymer Sciences ; Room temperature ; Sustainable Development ; Temperature effects ; Transformers ; Vapor phases</subject><ispartof>Cellulose (London), 2021-02, Vol.28 (3), p.1703-1714</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-887b8c927c0456802a4aff1128d5f55251637100753318580b47e672bbaa58ae3</citedby><cites>FETCH-LOGICAL-c356t-887b8c927c0456802a4aff1128d5f55251637100753318580b47e672bbaa58ae3</cites><orcidid>0000-0002-7660-7293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-020-03608-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-020-03608-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zheng, Hanbo</creatorcontrib><creatorcontrib>Shi, Kuikui</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Li, Yuquan</creatorcontrib><creatorcontrib>Zhang, Enze</creatorcontrib><creatorcontrib>Zhang, Chuansheng</creatorcontrib><creatorcontrib>Shao, Guangqi</creatorcontrib><creatorcontrib>Shi, Zhen</creatorcontrib><creatorcontrib>Zhang, Chaohai</creatorcontrib><title>Investigation on the equilibrium distribution of methanol in transformer oil-immersed cellulosic insulation</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Methanol in oil was used to indirectly evaluate the aging status of cellulosic paper insulation for oil-immersed transformers. However, the distribution of methanol in oil is affected by many factors, not only related to the oil–paper adsorption equilibrium, but also may be affected by the vapor–liquid phase transition. In this study, the adsorption experiments of mineral oil and standard cellulosic Kraft paper for methanol were designed to explore the adsorption equilibrium process at different oil–paper mass ratios under room temperature. The vapor–liquid equilibrium experiments of methanol between oil and gas were carried out to explore the effects of temperature and phase volume ratios. It turned out that: firstly, compared with mineral oil, the Kraft paper has a stronger adsorption capacity for methanol, which makes most of methanol adsorbed in paper when equilibrium at room temperature. Secondly, the increase of oil–paper mass ratios reduces the adsorption of Kraft paper for methanol and makes the equilibrium time longer. Particularly, at a higher oil–paper mass ratio, due to the less paper mass, methanol would “reverse diffusion” from paper to oil standard solution in the early stage of equilibrium. Finally, the presence of methanol in gas phase cannot be ignored. The increase of temperature makes more liquid methanol in oil transferred to the gas phase by the phase transition process, while increasing the oil–gas phase volume ratios in constant volume system can inhibit this process.
Graphic abstract</description><subject>Adsorption</subject><subject>Bioorganic Chemistry</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Equilibrium</subject><subject>Glass</subject><subject>Insulation</subject><subject>Liquid phases</subject><subject>Liquid-vapor equilibrium</subject><subject>Mass ratios</subject><subject>Methanol</subject><subject>Mineral oils</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Phase transitions</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Room temperature</subject><subject>Sustainable Development</subject><subject>Temperature effects</subject><subject>Transformers</subject><subject>Vapor phases</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wNWA69E8Jo9ZSvFRENwouAuZaaZNzUzaZCL4773tCO6EXBK453y59yB0TfAtwVjeJYK5xCWmUExgVYoTNCNc0lIp-nGKZrgWNbRZfY4uUtpijGtJyQx9Locvm0a3NqMLQwFn3NjC7rPzroku98XKpTG6Jk_9rujtuDFD8IUDbTRD6kLsbSyC86Xr4ZXsqmit99mH5FqQpeyP9Et01hmf7NXvPUfvjw9vi-fy5fVpubh_KVvGxQgTy0a1NZUtrrhQmJrKdB0hVK14xznlRDB52JozRhRXuKmkFZI2jTFcGcvm6Gbi7mLYZ9hOb0OOA3ypaQVciIJwUNFJ1caQUrSd3kXXm_itCdYHvJ5C1RCqPoaqBZjYZEogHtY2_qH_cf0AGbt7fg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zheng, Hanbo</creator><creator>Shi, Kuikui</creator><creator>Yang, Tao</creator><creator>Li, Yuquan</creator><creator>Zhang, Enze</creator><creator>Zhang, Chuansheng</creator><creator>Shao, Guangqi</creator><creator>Shi, Zhen</creator><creator>Zhang, Chaohai</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7660-7293</orcidid></search><sort><creationdate>20210201</creationdate><title>Investigation on the equilibrium distribution of methanol in transformer oil-immersed cellulosic insulation</title><author>Zheng, Hanbo ; Shi, Kuikui ; Yang, Tao ; Li, Yuquan ; Zhang, Enze ; Zhang, Chuansheng ; Shao, Guangqi ; Shi, Zhen ; Zhang, Chaohai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-887b8c927c0456802a4aff1128d5f55251637100753318580b47e672bbaa58ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Bioorganic Chemistry</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Equilibrium</topic><topic>Glass</topic><topic>Insulation</topic><topic>Liquid phases</topic><topic>Liquid-vapor equilibrium</topic><topic>Mass ratios</topic><topic>Methanol</topic><topic>Mineral oils</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Phase transitions</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Room temperature</topic><topic>Sustainable Development</topic><topic>Temperature effects</topic><topic>Transformers</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Hanbo</creatorcontrib><creatorcontrib>Shi, Kuikui</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Li, Yuquan</creatorcontrib><creatorcontrib>Zhang, Enze</creatorcontrib><creatorcontrib>Zhang, Chuansheng</creatorcontrib><creatorcontrib>Shao, Guangqi</creatorcontrib><creatorcontrib>Shi, Zhen</creatorcontrib><creatorcontrib>Zhang, Chaohai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Hanbo</au><au>Shi, Kuikui</au><au>Yang, Tao</au><au>Li, Yuquan</au><au>Zhang, Enze</au><au>Zhang, Chuansheng</au><au>Shao, Guangqi</au><au>Shi, Zhen</au><au>Zhang, Chaohai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation on the equilibrium distribution of methanol in transformer oil-immersed cellulosic insulation</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>28</volume><issue>3</issue><spage>1703</spage><epage>1714</epage><pages>1703-1714</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Methanol in oil was used to indirectly evaluate the aging status of cellulosic paper insulation for oil-immersed transformers. However, the distribution of methanol in oil is affected by many factors, not only related to the oil–paper adsorption equilibrium, but also may be affected by the vapor–liquid phase transition. In this study, the adsorption experiments of mineral oil and standard cellulosic Kraft paper for methanol were designed to explore the adsorption equilibrium process at different oil–paper mass ratios under room temperature. The vapor–liquid equilibrium experiments of methanol between oil and gas were carried out to explore the effects of temperature and phase volume ratios. It turned out that: firstly, compared with mineral oil, the Kraft paper has a stronger adsorption capacity for methanol, which makes most of methanol adsorbed in paper when equilibrium at room temperature. Secondly, the increase of oil–paper mass ratios reduces the adsorption of Kraft paper for methanol and makes the equilibrium time longer. Particularly, at a higher oil–paper mass ratio, due to the less paper mass, methanol would “reverse diffusion” from paper to oil standard solution in the early stage of equilibrium. Finally, the presence of methanol in gas phase cannot be ignored. The increase of temperature makes more liquid methanol in oil transferred to the gas phase by the phase transition process, while increasing the oil–gas phase volume ratios in constant volume system can inhibit this process.
Graphic abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-020-03608-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7660-7293</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2021-02, Vol.28 (3), p.1703-1714 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_journals_2492796915 |
source | Springer journals |
subjects | Adsorption Bioorganic Chemistry Ceramics Chemistry Chemistry and Materials Science Composites Equilibrium Glass Insulation Liquid phases Liquid-vapor equilibrium Mass ratios Methanol Mineral oils Natural Materials Organic Chemistry Original Research Phase transitions Physical Chemistry Polymer Sciences Room temperature Sustainable Development Temperature effects Transformers Vapor phases |
title | Investigation on the equilibrium distribution of methanol in transformer oil-immersed cellulosic insulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20on%20the%20equilibrium%20distribution%20of%20methanol%20in%20transformer%20oil-immersed%20cellulosic%20insulation&rft.jtitle=Cellulose%20(London)&rft.au=Zheng,%20Hanbo&rft.date=2021-02-01&rft.volume=28&rft.issue=3&rft.spage=1703&rft.epage=1714&rft.pages=1703-1714&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-020-03608-6&rft_dat=%3Cproquest_cross%3E2492796915%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492796915&rft_id=info:pmid/&rfr_iscdi=true |