Microhotplates based on Pt and Pt-Rh films: The impact of composition, structure, and thermal treatment on functional properties

[Display omitted] •Pt and Pt-Rh microhotplates are fabricated on the porous anodic alumina substrates.•Addition of 11 wt. % of Rh significantly hampers the recrystallization of Pt film.•Power consumption of microhotplates during operation at 500 °C is 115 ± 14 mW.•The resistance drift of Pt-11 % Rh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A. Physical. 2021-01, Vol.317, p.112457, Article 112457
Hauptverfasser: Kalinin, I.A., Roslyakov, I.V., Tsymbarenko, D.M., Bograchev, D.A., Krivetskiy, V.V., Napolskii, K.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112457
container_title Sensors and actuators. A. Physical.
container_volume 317
creator Kalinin, I.A.
Roslyakov, I.V.
Tsymbarenko, D.M.
Bograchev, D.A.
Krivetskiy, V.V.
Napolskii, K.S.
description [Display omitted] •Pt and Pt-Rh microhotplates are fabricated on the porous anodic alumina substrates.•Addition of 11 wt. % of Rh significantly hampers the recrystallization of Pt film.•Power consumption of microhotplates during operation at 500 °C is 115 ± 14 mW.•The resistance drift of Pt-11 % Rh microheater is less than 0.5 % per day at 500 °C.•The temperature gradient in the active zone of microhotplates is less than 10 %. Recent progress in portable semiconductor and thermocatalytic gas sensors requires the development of the microhotplates with reduced power consumption, increased shock resistance, and low resistance drift. Rh is known as alloying component, which allows one to decrease the diffusion mobility of Pt in bulk resistive heating elements. Here, a comparison study on the stability of microhotplates based on Pt and Pt-Rh thin films is performed. The porous anodic alumina is used as a substrate, which provides high adhesion of the metal film and the thermal expansion coefficient compatible with Pt and Pt-Rh alloys. Morphology and crystal structure of metal films are studied after recrystallization annealing in air at the temperatures 600–810 °C. To simulate thermal effects of the microhotplates, a model based on the finite element method is developed. The perspectives of Pt-11 % Rh alloy as a material for microhotplates operating at the temperatures above 500 °C are discussed. The achieved characteristics of the fabricated Pt-Rh microhotplates on porous anodic alumina substrates allow one to use them as a universal platform for semiconductor and thermocatalytic gas sensors manufacturing.
doi_str_mv 10.1016/j.sna.2020.112457
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2492706623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424720317726</els_id><sourcerecordid>2492706623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-49a4b32c603f719bc71819993b86d3a4debea12c2dc566142de0534a6b462f323</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD5-gLuA2-mYV9OprmTwBSOKjOuQprc0w7SpSSq486ebOq5dXe7lnHMPH0IXlCwoofJquwi9XjDC0k6ZyIsDNKPLgmecyPIQzUjJRCaYKI7RSQhbQgjnRTFD38_WeNe6OOx0hIArHaDGrsevEeu-TiN7a3Fjd124xpsWsO0GbSJ2DTauG1yw0bp-jkP0o4mjh_mvLbbgO73D0YOOHfRximzG3kzqdB-8G8BHC-EMHTV6F-D8b56i9_u7zeoxW788PK1u15nhLI-ZKLWoODOS8KagZWUKuqRlWfJqKWuuRQ0VaMoMq00uJRWsBpJzoWUlJGs446focp-bXn-MEKLautGnLkExUbKCSMl4UtG9KkEJwUOjBm877b8UJWoCrbYqgVYTaLUHnTw3ew-k-p8WvArGQm-gth5MVLWz_7h_ABZ9huU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492706623</pqid></control><display><type>article</type><title>Microhotplates based on Pt and Pt-Rh films: The impact of composition, structure, and thermal treatment on functional properties</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kalinin, I.A. ; Roslyakov, I.V. ; Tsymbarenko, D.M. ; Bograchev, D.A. ; Krivetskiy, V.V. ; Napolskii, K.S.</creator><creatorcontrib>Kalinin, I.A. ; Roslyakov, I.V. ; Tsymbarenko, D.M. ; Bograchev, D.A. ; Krivetskiy, V.V. ; Napolskii, K.S.</creatorcontrib><description>[Display omitted] •Pt and Pt-Rh microhotplates are fabricated on the porous anodic alumina substrates.•Addition of 11 wt. % of Rh significantly hampers the recrystallization of Pt film.•Power consumption of microhotplates during operation at 500 °C is 115 ± 14 mW.•The resistance drift of Pt-11 % Rh microheater is less than 0.5 % per day at 500 °C.•The temperature gradient in the active zone of microhotplates is less than 10 %. Recent progress in portable semiconductor and thermocatalytic gas sensors requires the development of the microhotplates with reduced power consumption, increased shock resistance, and low resistance drift. Rh is known as alloying component, which allows one to decrease the diffusion mobility of Pt in bulk resistive heating elements. Here, a comparison study on the stability of microhotplates based on Pt and Pt-Rh thin films is performed. The porous anodic alumina is used as a substrate, which provides high adhesion of the metal film and the thermal expansion coefficient compatible with Pt and Pt-Rh alloys. Morphology and crystal structure of metal films are studied after recrystallization annealing in air at the temperatures 600–810 °C. To simulate thermal effects of the microhotplates, a model based on the finite element method is developed. The perspectives of Pt-11 % Rh alloy as a material for microhotplates operating at the temperatures above 500 °C are discussed. The achieved characteristics of the fabricated Pt-Rh microhotplates on porous anodic alumina substrates allow one to use them as a universal platform for semiconductor and thermocatalytic gas sensors manufacturing.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2020.112457</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloys ; Aluminum oxide ; Anodic alumina ; Crystal structure ; Energy consumption ; Finite element analysis ; Finite element method ; Gas sensor ; Gas sensors ; Heat treatment ; Low resistance ; Metal films ; Microhotplate ; Morphology ; Platinum-rhodium alloy ; Power consumption ; Recrystallization ; Rhodium ; Rhodium base alloys ; Semiconductors ; Sensors ; Shock resistance ; Simulation ; Substrates ; Temperature effects ; Thermal expansion ; Thermal simulation ; Thin film ; Thin films</subject><ispartof>Sensors and actuators. A. Physical., 2021-01, Vol.317, p.112457, Article 112457</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-49a4b32c603f719bc71819993b86d3a4debea12c2dc566142de0534a6b462f323</citedby><cites>FETCH-LOGICAL-c325t-49a4b32c603f719bc71819993b86d3a4debea12c2dc566142de0534a6b462f323</cites><orcidid>0000-0002-2247-9388 ; 0000-0002-9353-9114 ; 0000-0002-2818-5639 ; 0000-0002-4515-0083 ; 0000-0002-1299-700X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0924424720317726$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Kalinin, I.A.</creatorcontrib><creatorcontrib>Roslyakov, I.V.</creatorcontrib><creatorcontrib>Tsymbarenko, D.M.</creatorcontrib><creatorcontrib>Bograchev, D.A.</creatorcontrib><creatorcontrib>Krivetskiy, V.V.</creatorcontrib><creatorcontrib>Napolskii, K.S.</creatorcontrib><title>Microhotplates based on Pt and Pt-Rh films: The impact of composition, structure, and thermal treatment on functional properties</title><title>Sensors and actuators. A. Physical.</title><description>[Display omitted] •Pt and Pt-Rh microhotplates are fabricated on the porous anodic alumina substrates.•Addition of 11 wt. % of Rh significantly hampers the recrystallization of Pt film.•Power consumption of microhotplates during operation at 500 °C is 115 ± 14 mW.•The resistance drift of Pt-11 % Rh microheater is less than 0.5 % per day at 500 °C.•The temperature gradient in the active zone of microhotplates is less than 10 %. Recent progress in portable semiconductor and thermocatalytic gas sensors requires the development of the microhotplates with reduced power consumption, increased shock resistance, and low resistance drift. Rh is known as alloying component, which allows one to decrease the diffusion mobility of Pt in bulk resistive heating elements. Here, a comparison study on the stability of microhotplates based on Pt and Pt-Rh thin films is performed. The porous anodic alumina is used as a substrate, which provides high adhesion of the metal film and the thermal expansion coefficient compatible with Pt and Pt-Rh alloys. Morphology and crystal structure of metal films are studied after recrystallization annealing in air at the temperatures 600–810 °C. To simulate thermal effects of the microhotplates, a model based on the finite element method is developed. The perspectives of Pt-11 % Rh alloy as a material for microhotplates operating at the temperatures above 500 °C are discussed. The achieved characteristics of the fabricated Pt-Rh microhotplates on porous anodic alumina substrates allow one to use them as a universal platform for semiconductor and thermocatalytic gas sensors manufacturing.</description><subject>Alloys</subject><subject>Aluminum oxide</subject><subject>Anodic alumina</subject><subject>Crystal structure</subject><subject>Energy consumption</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Gas sensor</subject><subject>Gas sensors</subject><subject>Heat treatment</subject><subject>Low resistance</subject><subject>Metal films</subject><subject>Microhotplate</subject><subject>Morphology</subject><subject>Platinum-rhodium alloy</subject><subject>Power consumption</subject><subject>Recrystallization</subject><subject>Rhodium</subject><subject>Rhodium base alloys</subject><subject>Semiconductors</subject><subject>Sensors</subject><subject>Shock resistance</subject><subject>Simulation</subject><subject>Substrates</subject><subject>Temperature effects</subject><subject>Thermal expansion</subject><subject>Thermal simulation</subject><subject>Thin film</subject><subject>Thin films</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD5-gLuA2-mYV9OprmTwBSOKjOuQprc0w7SpSSq486ebOq5dXe7lnHMPH0IXlCwoofJquwi9XjDC0k6ZyIsDNKPLgmecyPIQzUjJRCaYKI7RSQhbQgjnRTFD38_WeNe6OOx0hIArHaDGrsevEeu-TiN7a3Fjd124xpsWsO0GbSJ2DTauG1yw0bp-jkP0o4mjh_mvLbbgO73D0YOOHfRximzG3kzqdB-8G8BHC-EMHTV6F-D8b56i9_u7zeoxW788PK1u15nhLI-ZKLWoODOS8KagZWUKuqRlWfJqKWuuRQ0VaMoMq00uJRWsBpJzoWUlJGs446focp-bXn-MEKLautGnLkExUbKCSMl4UtG9KkEJwUOjBm877b8UJWoCrbYqgVYTaLUHnTw3ew-k-p8WvArGQm-gth5MVLWz_7h_ABZ9huU</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Kalinin, I.A.</creator><creator>Roslyakov, I.V.</creator><creator>Tsymbarenko, D.M.</creator><creator>Bograchev, D.A.</creator><creator>Krivetskiy, V.V.</creator><creator>Napolskii, K.S.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2247-9388</orcidid><orcidid>https://orcid.org/0000-0002-9353-9114</orcidid><orcidid>https://orcid.org/0000-0002-2818-5639</orcidid><orcidid>https://orcid.org/0000-0002-4515-0083</orcidid><orcidid>https://orcid.org/0000-0002-1299-700X</orcidid></search><sort><creationdate>20210101</creationdate><title>Microhotplates based on Pt and Pt-Rh films: The impact of composition, structure, and thermal treatment on functional properties</title><author>Kalinin, I.A. ; Roslyakov, I.V. ; Tsymbarenko, D.M. ; Bograchev, D.A. ; Krivetskiy, V.V. ; Napolskii, K.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-49a4b32c603f719bc71819993b86d3a4debea12c2dc566142de0534a6b462f323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloys</topic><topic>Aluminum oxide</topic><topic>Anodic alumina</topic><topic>Crystal structure</topic><topic>Energy consumption</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Gas sensor</topic><topic>Gas sensors</topic><topic>Heat treatment</topic><topic>Low resistance</topic><topic>Metal films</topic><topic>Microhotplate</topic><topic>Morphology</topic><topic>Platinum-rhodium alloy</topic><topic>Power consumption</topic><topic>Recrystallization</topic><topic>Rhodium</topic><topic>Rhodium base alloys</topic><topic>Semiconductors</topic><topic>Sensors</topic><topic>Shock resistance</topic><topic>Simulation</topic><topic>Substrates</topic><topic>Temperature effects</topic><topic>Thermal expansion</topic><topic>Thermal simulation</topic><topic>Thin film</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalinin, I.A.</creatorcontrib><creatorcontrib>Roslyakov, I.V.</creatorcontrib><creatorcontrib>Tsymbarenko, D.M.</creatorcontrib><creatorcontrib>Bograchev, D.A.</creatorcontrib><creatorcontrib>Krivetskiy, V.V.</creatorcontrib><creatorcontrib>Napolskii, K.S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalinin, I.A.</au><au>Roslyakov, I.V.</au><au>Tsymbarenko, D.M.</au><au>Bograchev, D.A.</au><au>Krivetskiy, V.V.</au><au>Napolskii, K.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microhotplates based on Pt and Pt-Rh films: The impact of composition, structure, and thermal treatment on functional properties</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>317</volume><spage>112457</spage><pages>112457-</pages><artnum>112457</artnum><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>[Display omitted] •Pt and Pt-Rh microhotplates are fabricated on the porous anodic alumina substrates.•Addition of 11 wt. % of Rh significantly hampers the recrystallization of Pt film.•Power consumption of microhotplates during operation at 500 °C is 115 ± 14 mW.•The resistance drift of Pt-11 % Rh microheater is less than 0.5 % per day at 500 °C.•The temperature gradient in the active zone of microhotplates is less than 10 %. Recent progress in portable semiconductor and thermocatalytic gas sensors requires the development of the microhotplates with reduced power consumption, increased shock resistance, and low resistance drift. Rh is known as alloying component, which allows one to decrease the diffusion mobility of Pt in bulk resistive heating elements. Here, a comparison study on the stability of microhotplates based on Pt and Pt-Rh thin films is performed. The porous anodic alumina is used as a substrate, which provides high adhesion of the metal film and the thermal expansion coefficient compatible with Pt and Pt-Rh alloys. Morphology and crystal structure of metal films are studied after recrystallization annealing in air at the temperatures 600–810 °C. To simulate thermal effects of the microhotplates, a model based on the finite element method is developed. The perspectives of Pt-11 % Rh alloy as a material for microhotplates operating at the temperatures above 500 °C are discussed. The achieved characteristics of the fabricated Pt-Rh microhotplates on porous anodic alumina substrates allow one to use them as a universal platform for semiconductor and thermocatalytic gas sensors manufacturing.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2020.112457</doi><orcidid>https://orcid.org/0000-0002-2247-9388</orcidid><orcidid>https://orcid.org/0000-0002-9353-9114</orcidid><orcidid>https://orcid.org/0000-0002-2818-5639</orcidid><orcidid>https://orcid.org/0000-0002-4515-0083</orcidid><orcidid>https://orcid.org/0000-0002-1299-700X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2021-01, Vol.317, p.112457, Article 112457
issn 0924-4247
1873-3069
language eng
recordid cdi_proquest_journals_2492706623
source Elsevier ScienceDirect Journals Complete
subjects Alloys
Aluminum oxide
Anodic alumina
Crystal structure
Energy consumption
Finite element analysis
Finite element method
Gas sensor
Gas sensors
Heat treatment
Low resistance
Metal films
Microhotplate
Morphology
Platinum-rhodium alloy
Power consumption
Recrystallization
Rhodium
Rhodium base alloys
Semiconductors
Sensors
Shock resistance
Simulation
Substrates
Temperature effects
Thermal expansion
Thermal simulation
Thin film
Thin films
title Microhotplates based on Pt and Pt-Rh films: The impact of composition, structure, and thermal treatment on functional properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A25%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microhotplates%20based%20on%20Pt%20and%20Pt-Rh%20films:%20The%20impact%20of%20composition,%20structure,%20and%20thermal%20treatment%20on%20functional%20properties&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Kalinin,%20I.A.&rft.date=2021-01-01&rft.volume=317&rft.spage=112457&rft.pages=112457-&rft.artnum=112457&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2020.112457&rft_dat=%3Cproquest_cross%3E2492706623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492706623&rft_id=info:pmid/&rft_els_id=S0924424720317726&rfr_iscdi=true