Intrinsic enzyme‐like activity of magnetite particles is enhanced by cultivation with Trichoderma guizhouense
Summary Fungal–mineral interactions can produce large amounts of biogenic nano‐size (~ 1–100 nm) minerals, yet their influence on fungal physiology and growth remains largely unexplored. Using Trichoderma guizhouense NJAU4742 and magnetite (Mt) as a model fungus and mineral system, we have shown for...
Gespeichert in:
Veröffentlicht in: | Environmental microbiology 2021-02, Vol.23 (2), p.893-907 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 907 |
---|---|
container_issue | 2 |
container_start_page | 893 |
container_title | Environmental microbiology |
container_volume | 23 |
creator | Chi, Zhi‐Lai Zhao, Xiang‐Yang Chen, Ya‐Ling Hao, Jia‐Long Yu, Guang‐Hui Goodman, Bernard A. Gadd, Geoffrey Michael |
description | Summary
Fungal–mineral interactions can produce large amounts of biogenic nano‐size (~ 1–100 nm) minerals, yet their influence on fungal physiology and growth remains largely unexplored. Using Trichoderma guizhouense NJAU4742 and magnetite (Mt) as a model fungus and mineral system, we have shown for the first time that biogenic Mt nanoparticles formed during fungal–mineral cultivation exhibit intrinsic peroxidase‐like activity. Specifically, the average peroxidase‐like activity of Mt nanoparticles after 72 h cultivation was ~ 2.4 times higher than that of the original Mt. Evidence from high resolution X‐ray photoelectron spectroscopy analyses indicated that the unique properties of magnetite nanoparticles largely stemmed from their high proportion of surface non‐lattice oxygen, through occupying surface oxygen‐vacant sites, rather than Fe redox chemistry, which challenges conventional Fenton reaction theories that assume iron to be the sole redox‐active centre. Nanoscale secondary ion mass spectrometry with a resolution down to 50 nm demonstrated that a thin ( |
doi_str_mv | 10.1111/1462-2920.15193 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2492679779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492679779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4123-aa675f48b248837ec2563fe7d6ba039247dfb87f8c83ac6b318ddb34bb2228623</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EgnKZ2ZAl5kJsJ7EzIsSlUhFLmS3bOSGGXIrtUIWJR-AZeRJSUrrixT5H3_9b-hA6JdEFGc4liVM6pRkdxoRkbAdNtpvd7ZvQA3To_UsUEc54tI8OGOWCsTidoHbWBGcbbw2G5qOv4fvzq7KvgJUJ9t2GHrcFrtVzA8EGwEvlgjUVeGz9EChVYyDHusemqwZeBds2eGVDiRfOmrLNwdUKP3f2o2w7aDwco71CVR5ONvcRerq9WVzfT-ePd7Prq_nUxISyqVIpT4pYaBoLwTgYmqSsAJ6nWkUsozHPCy14IYxgyqSaEZHnmsVaU0pFStkROh97l65968AH-dJ2rhm-lDTOaMozzrOBuhwp41rvHRRy6WytXC9JJNeC5VqhXOuUv4KHxNmmt9M15Fv-z-gAJCOwshX0__XJm4fZWPwDo3WHwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492679779</pqid></control><display><type>article</type><title>Intrinsic enzyme‐like activity of magnetite particles is enhanced by cultivation with Trichoderma guizhouense</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chi, Zhi‐Lai ; Zhao, Xiang‐Yang ; Chen, Ya‐Ling ; Hao, Jia‐Long ; Yu, Guang‐Hui ; Goodman, Bernard A. ; Gadd, Geoffrey Michael</creator><creatorcontrib>Chi, Zhi‐Lai ; Zhao, Xiang‐Yang ; Chen, Ya‐Ling ; Hao, Jia‐Long ; Yu, Guang‐Hui ; Goodman, Bernard A. ; Gadd, Geoffrey Michael</creatorcontrib><description>Summary
Fungal–mineral interactions can produce large amounts of biogenic nano‐size (~ 1–100 nm) minerals, yet their influence on fungal physiology and growth remains largely unexplored. Using Trichoderma guizhouense NJAU4742 and magnetite (Mt) as a model fungus and mineral system, we have shown for the first time that biogenic Mt nanoparticles formed during fungal–mineral cultivation exhibit intrinsic peroxidase‐like activity. Specifically, the average peroxidase‐like activity of Mt nanoparticles after 72 h cultivation was ~ 2.4 times higher than that of the original Mt. Evidence from high resolution X‐ray photoelectron spectroscopy analyses indicated that the unique properties of magnetite nanoparticles largely stemmed from their high proportion of surface non‐lattice oxygen, through occupying surface oxygen‐vacant sites, rather than Fe redox chemistry, which challenges conventional Fenton reaction theories that assume iron to be the sole redox‐active centre. Nanoscale secondary ion mass spectrometry with a resolution down to 50 nm demonstrated that a thin (< 1 μm) oxygen‐film was present on the surface of fungal hyphae. Furthermore, synchrotron radiation‐based micro‐FTIR spectra revealed that surface oxygen groups corresponded mainly to organic OH, mineral OH and carbonyl groups. Together, these findings highlight an important, but unrecognized, catalytic activity of mineral nanoparticles produced by fungal–mineral interactions and contribute substantially to our understanding of mineral nanoparticles in natural ecosystems.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.15193</identifier><identifier>PMID: 32783346</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Analytical methods ; Carbonyl compounds ; Carbonyl groups ; Carbonyls ; Catalytic activity ; Cultivation ; Fungi ; Hyphae ; Iron ; Magnetic properties ; Magnetite ; Mass spectrometry ; Mass spectroscopy ; Minerals ; Nanoparticles ; Oxidoreductions ; Oxygen ; Peroxidase ; Photoelectron spectroscopy ; Photoelectrons ; Radiation ; Resolution ; Secondary ion mass spectrometry ; Synchrotron radiation ; Synchrotrons ; Trichoderma</subject><ispartof>Environmental microbiology, 2021-02, Vol.23 (2), p.893-907</ispartof><rights>2020 Society for Applied Microbiology and John Wiley & Sons Ltd</rights><rights>2020 Society for Applied Microbiology and John Wiley & Sons Ltd.</rights><rights>2021 Society for Applied Microbiology and John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4123-aa675f48b248837ec2563fe7d6ba039247dfb87f8c83ac6b318ddb34bb2228623</citedby><cites>FETCH-LOGICAL-c4123-aa675f48b248837ec2563fe7d6ba039247dfb87f8c83ac6b318ddb34bb2228623</cites><orcidid>0000-0002-5699-779X ; 0000-0001-6874-870X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.15193$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.15193$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32783346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chi, Zhi‐Lai</creatorcontrib><creatorcontrib>Zhao, Xiang‐Yang</creatorcontrib><creatorcontrib>Chen, Ya‐Ling</creatorcontrib><creatorcontrib>Hao, Jia‐Long</creatorcontrib><creatorcontrib>Yu, Guang‐Hui</creatorcontrib><creatorcontrib>Goodman, Bernard A.</creatorcontrib><creatorcontrib>Gadd, Geoffrey Michael</creatorcontrib><title>Intrinsic enzyme‐like activity of magnetite particles is enhanced by cultivation with Trichoderma guizhouense</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary
Fungal–mineral interactions can produce large amounts of biogenic nano‐size (~ 1–100 nm) minerals, yet their influence on fungal physiology and growth remains largely unexplored. Using Trichoderma guizhouense NJAU4742 and magnetite (Mt) as a model fungus and mineral system, we have shown for the first time that biogenic Mt nanoparticles formed during fungal–mineral cultivation exhibit intrinsic peroxidase‐like activity. Specifically, the average peroxidase‐like activity of Mt nanoparticles after 72 h cultivation was ~ 2.4 times higher than that of the original Mt. Evidence from high resolution X‐ray photoelectron spectroscopy analyses indicated that the unique properties of magnetite nanoparticles largely stemmed from their high proportion of surface non‐lattice oxygen, through occupying surface oxygen‐vacant sites, rather than Fe redox chemistry, which challenges conventional Fenton reaction theories that assume iron to be the sole redox‐active centre. Nanoscale secondary ion mass spectrometry with a resolution down to 50 nm demonstrated that a thin (< 1 μm) oxygen‐film was present on the surface of fungal hyphae. Furthermore, synchrotron radiation‐based micro‐FTIR spectra revealed that surface oxygen groups corresponded mainly to organic OH, mineral OH and carbonyl groups. Together, these findings highlight an important, but unrecognized, catalytic activity of mineral nanoparticles produced by fungal–mineral interactions and contribute substantially to our understanding of mineral nanoparticles in natural ecosystems.</description><subject>Analytical methods</subject><subject>Carbonyl compounds</subject><subject>Carbonyl groups</subject><subject>Carbonyls</subject><subject>Catalytic activity</subject><subject>Cultivation</subject><subject>Fungi</subject><subject>Hyphae</subject><subject>Iron</subject><subject>Magnetic properties</subject><subject>Magnetite</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Minerals</subject><subject>Nanoparticles</subject><subject>Oxidoreductions</subject><subject>Oxygen</subject><subject>Peroxidase</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Radiation</subject><subject>Resolution</subject><subject>Secondary ion mass spectrometry</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Trichoderma</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EgnKZ2ZAl5kJsJ7EzIsSlUhFLmS3bOSGGXIrtUIWJR-AZeRJSUrrixT5H3_9b-hA6JdEFGc4liVM6pRkdxoRkbAdNtpvd7ZvQA3To_UsUEc54tI8OGOWCsTidoHbWBGcbbw2G5qOv4fvzq7KvgJUJ9t2GHrcFrtVzA8EGwEvlgjUVeGz9EChVYyDHusemqwZeBds2eGVDiRfOmrLNwdUKP3f2o2w7aDwco71CVR5ONvcRerq9WVzfT-ePd7Prq_nUxISyqVIpT4pYaBoLwTgYmqSsAJ6nWkUsozHPCy14IYxgyqSaEZHnmsVaU0pFStkROh97l65968AH-dJ2rhm-lDTOaMozzrOBuhwp41rvHRRy6WytXC9JJNeC5VqhXOuUv4KHxNmmt9M15Fv-z-gAJCOwshX0__XJm4fZWPwDo3WHwg</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Chi, Zhi‐Lai</creator><creator>Zhao, Xiang‐Yang</creator><creator>Chen, Ya‐Ling</creator><creator>Hao, Jia‐Long</creator><creator>Yu, Guang‐Hui</creator><creator>Goodman, Bernard A.</creator><creator>Gadd, Geoffrey Michael</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5699-779X</orcidid><orcidid>https://orcid.org/0000-0001-6874-870X</orcidid></search><sort><creationdate>202102</creationdate><title>Intrinsic enzyme‐like activity of magnetite particles is enhanced by cultivation with Trichoderma guizhouense</title><author>Chi, Zhi‐Lai ; Zhao, Xiang‐Yang ; Chen, Ya‐Ling ; Hao, Jia‐Long ; Yu, Guang‐Hui ; Goodman, Bernard A. ; Gadd, Geoffrey Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4123-aa675f48b248837ec2563fe7d6ba039247dfb87f8c83ac6b318ddb34bb2228623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical methods</topic><topic>Carbonyl compounds</topic><topic>Carbonyl groups</topic><topic>Carbonyls</topic><topic>Catalytic activity</topic><topic>Cultivation</topic><topic>Fungi</topic><topic>Hyphae</topic><topic>Iron</topic><topic>Magnetic properties</topic><topic>Magnetite</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Minerals</topic><topic>Nanoparticles</topic><topic>Oxidoreductions</topic><topic>Oxygen</topic><topic>Peroxidase</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Radiation</topic><topic>Resolution</topic><topic>Secondary ion mass spectrometry</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Trichoderma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chi, Zhi‐Lai</creatorcontrib><creatorcontrib>Zhao, Xiang‐Yang</creatorcontrib><creatorcontrib>Chen, Ya‐Ling</creatorcontrib><creatorcontrib>Hao, Jia‐Long</creatorcontrib><creatorcontrib>Yu, Guang‐Hui</creatorcontrib><creatorcontrib>Goodman, Bernard A.</creatorcontrib><creatorcontrib>Gadd, Geoffrey Michael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chi, Zhi‐Lai</au><au>Zhao, Xiang‐Yang</au><au>Chen, Ya‐Ling</au><au>Hao, Jia‐Long</au><au>Yu, Guang‐Hui</au><au>Goodman, Bernard A.</au><au>Gadd, Geoffrey Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic enzyme‐like activity of magnetite particles is enhanced by cultivation with Trichoderma guizhouense</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2021-02</date><risdate>2021</risdate><volume>23</volume><issue>2</issue><spage>893</spage><epage>907</epage><pages>893-907</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary
Fungal–mineral interactions can produce large amounts of biogenic nano‐size (~ 1–100 nm) minerals, yet their influence on fungal physiology and growth remains largely unexplored. Using Trichoderma guizhouense NJAU4742 and magnetite (Mt) as a model fungus and mineral system, we have shown for the first time that biogenic Mt nanoparticles formed during fungal–mineral cultivation exhibit intrinsic peroxidase‐like activity. Specifically, the average peroxidase‐like activity of Mt nanoparticles after 72 h cultivation was ~ 2.4 times higher than that of the original Mt. Evidence from high resolution X‐ray photoelectron spectroscopy analyses indicated that the unique properties of magnetite nanoparticles largely stemmed from their high proportion of surface non‐lattice oxygen, through occupying surface oxygen‐vacant sites, rather than Fe redox chemistry, which challenges conventional Fenton reaction theories that assume iron to be the sole redox‐active centre. Nanoscale secondary ion mass spectrometry with a resolution down to 50 nm demonstrated that a thin (< 1 μm) oxygen‐film was present on the surface of fungal hyphae. Furthermore, synchrotron radiation‐based micro‐FTIR spectra revealed that surface oxygen groups corresponded mainly to organic OH, mineral OH and carbonyl groups. Together, these findings highlight an important, but unrecognized, catalytic activity of mineral nanoparticles produced by fungal–mineral interactions and contribute substantially to our understanding of mineral nanoparticles in natural ecosystems.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>32783346</pmid><doi>10.1111/1462-2920.15193</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5699-779X</orcidid><orcidid>https://orcid.org/0000-0001-6874-870X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-2912 |
ispartof | Environmental microbiology, 2021-02, Vol.23 (2), p.893-907 |
issn | 1462-2912 1462-2920 |
language | eng |
recordid | cdi_proquest_journals_2492679779 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Analytical methods Carbonyl compounds Carbonyl groups Carbonyls Catalytic activity Cultivation Fungi Hyphae Iron Magnetic properties Magnetite Mass spectrometry Mass spectroscopy Minerals Nanoparticles Oxidoreductions Oxygen Peroxidase Photoelectron spectroscopy Photoelectrons Radiation Resolution Secondary ion mass spectrometry Synchrotron radiation Synchrotrons Trichoderma |
title | Intrinsic enzyme‐like activity of magnetite particles is enhanced by cultivation with Trichoderma guizhouense |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20enzyme%E2%80%90like%20activity%20of%20magnetite%20particles%20is%20enhanced%20by%20cultivation%20with%20Trichoderma%20guizhouense&rft.jtitle=Environmental%20microbiology&rft.au=Chi,%20Zhi%E2%80%90Lai&rft.date=2021-02&rft.volume=23&rft.issue=2&rft.spage=893&rft.epage=907&rft.pages=893-907&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.15193&rft_dat=%3Cproquest_cross%3E2492679779%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492679779&rft_id=info:pmid/32783346&rfr_iscdi=true |