On Exponential Bases and Frames with Non-linear Phase Functions and Some Applications
In this paper, we study the spectrality and frame-spectrality of exponential systems of the type E ( Λ , φ ) = { e 2 π i λ · φ ( x ) : λ ∈ Λ } where the phase function φ is a Borel measurable which is not necessarily linear. A complete characterization of pairs ( Λ , φ ) for which E ( Λ , φ ) is an...
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2021-04, Vol.27 (2), Article 9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | The Journal of fourier analysis and applications |
container_volume | 27 |
creator | Gabardo, Jean-Pierre Lai, Chun-Kit Oussa, Vignon |
description | In this paper, we study the spectrality and frame-spectrality of exponential systems of the type
E
(
Λ
,
φ
)
=
{
e
2
π
i
λ
·
φ
(
x
)
:
λ
∈
Λ
}
where the phase function
φ
is a Borel measurable which is not necessarily linear. A complete characterization of pairs
(
Λ
,
φ
)
for which
E
(
Λ
,
φ
)
is an orthogonal basis or a frame for
L
2
(
μ
)
is obtained. In particular, we show that the middle-third Cantor measures and the unit disc, each admits an orthogonal basis with a certain non-linear phase. Under a natural regularity condition on the phase functions, when
μ
is the Lebesgue measure on [0, 1] and
Λ
=
Z
,
we show that only the standard phase functions
φ
(
x
)
=
±
x
are the only possible functions that give rise to orthonormal bases. Surprisingly, however we prove that there exist a greater degree of flexibility, even for continuously differentiable phase functions in higher dimensions. For instance, we were able to describe a large class of functions
φ
defined on
R
d
such that the system
E
(
Λ
,
φ
)
is an orthonormal basis for
L
2
[
0
,
1
]
d
when
d
≥
2
.
Moreover, we discuss how our results apply to the discretization problem of unitary representations of locally compact groups for the construction of orthonormal bases. Finally, we conclude the paper by stating several open problems. |
doi_str_mv | 10.1007/s00041-021-09814-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2492678267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718414017</galeid><sourcerecordid>A718414017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-e31b24d610414fe5755349bbb7d7f3c308c6213d9bd19d270fa49dc0b82cdb233</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKdfwKeCz53507TN4xybCsMJuueQJumW0aU16VC_vXer4JuESy6X37k5OQjdEjwhGBf3EWOckRRTKFGSLOVnaEQ4IykvOTmHHucC-lxcoqsYdxhIVrARWq98Mv_qWm9971STPKhoY6K8SRZB7aH9dP02eWl92jhvVUhet0Aki4PXvWv9gL61e5tMu65xWp2m1-iiVk20N7_3GK0X8_fZU7pcPT7PpstUMyz61DJS0czkBLxnteUF5ywTVVUVpqgZMKXOwacRlSHC0ALXKhNG46qk2lSUsTG6G_Z2of042NjLXXsIHp6UNBM0L0oooCYDtVGNlc7XbR-UhmPs3mn4eu1gPi1ICTYwOQroINChjTHYWnbB7VX4lgTLY95yyFtCivKUt-QgYoMoAuw3Nvx5-Uf1A5xmgao</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492678267</pqid></control><display><type>article</type><title>On Exponential Bases and Frames with Non-linear Phase Functions and Some Applications</title><source>Springer Nature - Complete Springer Journals</source><creator>Gabardo, Jean-Pierre ; Lai, Chun-Kit ; Oussa, Vignon</creator><creatorcontrib>Gabardo, Jean-Pierre ; Lai, Chun-Kit ; Oussa, Vignon</creatorcontrib><description>In this paper, we study the spectrality and frame-spectrality of exponential systems of the type
E
(
Λ
,
φ
)
=
{
e
2
π
i
λ
·
φ
(
x
)
:
λ
∈
Λ
}
where the phase function
φ
is a Borel measurable which is not necessarily linear. A complete characterization of pairs
(
Λ
,
φ
)
for which
E
(
Λ
,
φ
)
is an orthogonal basis or a frame for
L
2
(
μ
)
is obtained. In particular, we show that the middle-third Cantor measures and the unit disc, each admits an orthogonal basis with a certain non-linear phase. Under a natural regularity condition on the phase functions, when
μ
is the Lebesgue measure on [0, 1] and
Λ
=
Z
,
we show that only the standard phase functions
φ
(
x
)
=
±
x
are the only possible functions that give rise to orthonormal bases. Surprisingly, however we prove that there exist a greater degree of flexibility, even for continuously differentiable phase functions in higher dimensions. For instance, we were able to describe a large class of functions
φ
defined on
R
d
such that the system
E
(
Λ
,
φ
)
is an orthonormal basis for
L
2
[
0
,
1
]
d
when
d
≥
2
.
Moreover, we discuss how our results apply to the discretization problem of unitary representations of locally compact groups for the construction of orthonormal bases. Finally, we conclude the paper by stating several open problems.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-021-09814-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Fourier Analysis ; Linear phase ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2021-04, Vol.27 (2), Article 9</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-e31b24d610414fe5755349bbb7d7f3c308c6213d9bd19d270fa49dc0b82cdb233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-021-09814-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-021-09814-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Gabardo, Jean-Pierre</creatorcontrib><creatorcontrib>Lai, Chun-Kit</creatorcontrib><creatorcontrib>Oussa, Vignon</creatorcontrib><title>On Exponential Bases and Frames with Non-linear Phase Functions and Some Applications</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>In this paper, we study the spectrality and frame-spectrality of exponential systems of the type
E
(
Λ
,
φ
)
=
{
e
2
π
i
λ
·
φ
(
x
)
:
λ
∈
Λ
}
where the phase function
φ
is a Borel measurable which is not necessarily linear. A complete characterization of pairs
(
Λ
,
φ
)
for which
E
(
Λ
,
φ
)
is an orthogonal basis or a frame for
L
2
(
μ
)
is obtained. In particular, we show that the middle-third Cantor measures and the unit disc, each admits an orthogonal basis with a certain non-linear phase. Under a natural regularity condition on the phase functions, when
μ
is the Lebesgue measure on [0, 1] and
Λ
=
Z
,
we show that only the standard phase functions
φ
(
x
)
=
±
x
are the only possible functions that give rise to orthonormal bases. Surprisingly, however we prove that there exist a greater degree of flexibility, even for continuously differentiable phase functions in higher dimensions. For instance, we were able to describe a large class of functions
φ
defined on
R
d
such that the system
E
(
Λ
,
φ
)
is an orthonormal basis for
L
2
[
0
,
1
]
d
when
d
≥
2
.
Moreover, we discuss how our results apply to the discretization problem of unitary representations of locally compact groups for the construction of orthonormal bases. Finally, we conclude the paper by stating several open problems.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Fourier Analysis</subject><subject>Linear phase</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKdfwKeCz53507TN4xybCsMJuueQJumW0aU16VC_vXer4JuESy6X37k5OQjdEjwhGBf3EWOckRRTKFGSLOVnaEQ4IykvOTmHHucC-lxcoqsYdxhIVrARWq98Mv_qWm9971STPKhoY6K8SRZB7aH9dP02eWl92jhvVUhet0Aki4PXvWv9gL61e5tMu65xWp2m1-iiVk20N7_3GK0X8_fZU7pcPT7PpstUMyz61DJS0czkBLxnteUF5ywTVVUVpqgZMKXOwacRlSHC0ALXKhNG46qk2lSUsTG6G_Z2of042NjLXXsIHp6UNBM0L0oooCYDtVGNlc7XbR-UhmPs3mn4eu1gPi1ICTYwOQroINChjTHYWnbB7VX4lgTLY95yyFtCivKUt-QgYoMoAuw3Nvx5-Uf1A5xmgao</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Gabardo, Jean-Pierre</creator><creator>Lai, Chun-Kit</creator><creator>Oussa, Vignon</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>On Exponential Bases and Frames with Non-linear Phase Functions and Some Applications</title><author>Gabardo, Jean-Pierre ; Lai, Chun-Kit ; Oussa, Vignon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-e31b24d610414fe5755349bbb7d7f3c308c6213d9bd19d270fa49dc0b82cdb233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Fourier Analysis</topic><topic>Linear phase</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gabardo, Jean-Pierre</creatorcontrib><creatorcontrib>Lai, Chun-Kit</creatorcontrib><creatorcontrib>Oussa, Vignon</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gabardo, Jean-Pierre</au><au>Lai, Chun-Kit</au><au>Oussa, Vignon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Exponential Bases and Frames with Non-linear Phase Functions and Some Applications</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>27</volume><issue>2</issue><artnum>9</artnum><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>In this paper, we study the spectrality and frame-spectrality of exponential systems of the type
E
(
Λ
,
φ
)
=
{
e
2
π
i
λ
·
φ
(
x
)
:
λ
∈
Λ
}
where the phase function
φ
is a Borel measurable which is not necessarily linear. A complete characterization of pairs
(
Λ
,
φ
)
for which
E
(
Λ
,
φ
)
is an orthogonal basis or a frame for
L
2
(
μ
)
is obtained. In particular, we show that the middle-third Cantor measures and the unit disc, each admits an orthogonal basis with a certain non-linear phase. Under a natural regularity condition on the phase functions, when
μ
is the Lebesgue measure on [0, 1] and
Λ
=
Z
,
we show that only the standard phase functions
φ
(
x
)
=
±
x
are the only possible functions that give rise to orthonormal bases. Surprisingly, however we prove that there exist a greater degree of flexibility, even for continuously differentiable phase functions in higher dimensions. For instance, we were able to describe a large class of functions
φ
defined on
R
d
such that the system
E
(
Λ
,
φ
)
is an orthonormal basis for
L
2
[
0
,
1
]
d
when
d
≥
2
.
Moreover, we discuss how our results apply to the discretization problem of unitary representations of locally compact groups for the construction of orthonormal bases. Finally, we conclude the paper by stating several open problems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-021-09814-5</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1069-5869 |
ispartof | The Journal of fourier analysis and applications, 2021-04, Vol.27 (2), Article 9 |
issn | 1069-5869 1531-5851 |
language | eng |
recordid | cdi_proquest_journals_2492678267 |
source | Springer Nature - Complete Springer Journals |
subjects | Abstract Harmonic Analysis Approximations and Expansions Fourier Analysis Linear phase Mathematical Methods in Physics Mathematics Mathematics and Statistics Partial Differential Equations Signal,Image and Speech Processing |
title | On Exponential Bases and Frames with Non-linear Phase Functions and Some Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A02%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Exponential%20Bases%20and%20Frames%20with%20Non-linear%20Phase%20Functions%20and%20Some%20Applications&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Gabardo,%20Jean-Pierre&rft.date=2021-04-01&rft.volume=27&rft.issue=2&rft.artnum=9&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-021-09814-5&rft_dat=%3Cgale_proqu%3EA718414017%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492678267&rft_id=info:pmid/&rft_galeid=A718414017&rfr_iscdi=true |