On Exponential Bases and Frames with Non-linear Phase Functions and Some Applications

In this paper, we study the spectrality and frame-spectrality of exponential systems of the type E ( Λ , φ ) = { e 2 π i λ · φ ( x ) : λ ∈ Λ } where the phase function φ is a Borel measurable which is not necessarily linear. A complete characterization of pairs ( Λ , φ ) for which E ( Λ , φ ) is an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2021-04, Vol.27 (2), Article 9
Hauptverfasser: Gabardo, Jean-Pierre, Lai, Chun-Kit, Oussa, Vignon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title The Journal of fourier analysis and applications
container_volume 27
creator Gabardo, Jean-Pierre
Lai, Chun-Kit
Oussa, Vignon
description In this paper, we study the spectrality and frame-spectrality of exponential systems of the type E ( Λ , φ ) = { e 2 π i λ · φ ( x ) : λ ∈ Λ } where the phase function φ is a Borel measurable which is not necessarily linear. A complete characterization of pairs ( Λ , φ ) for which E ( Λ , φ ) is an orthogonal basis or a frame for L 2 ( μ ) is obtained. In particular, we show that the middle-third Cantor measures and the unit disc, each admits an orthogonal basis with a certain non-linear phase. Under a natural regularity condition on the phase functions, when μ is the Lebesgue measure on [0, 1] and Λ = Z , we show that only the standard phase functions φ ( x ) = ± x are the only possible functions that give rise to orthonormal bases. Surprisingly, however we prove that there exist a greater degree of flexibility, even for continuously differentiable phase functions in higher dimensions. For instance, we were able to describe a large class of functions φ defined on R d such that the system E ( Λ , φ ) is an orthonormal basis for L 2 [ 0 , 1 ] d when d ≥ 2 . Moreover, we discuss how our results apply to the discretization problem of unitary representations of locally compact groups for the construction of orthonormal bases. Finally, we conclude the paper by stating several open problems.
doi_str_mv 10.1007/s00041-021-09814-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2492678267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718414017</galeid><sourcerecordid>A718414017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-e31b24d610414fe5755349bbb7d7f3c308c6213d9bd19d270fa49dc0b82cdb233</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKdfwKeCz53507TN4xybCsMJuueQJumW0aU16VC_vXer4JuESy6X37k5OQjdEjwhGBf3EWOckRRTKFGSLOVnaEQ4IykvOTmHHucC-lxcoqsYdxhIVrARWq98Mv_qWm9971STPKhoY6K8SRZB7aH9dP02eWl92jhvVUhet0Aki4PXvWv9gL61e5tMu65xWp2m1-iiVk20N7_3GK0X8_fZU7pcPT7PpstUMyz61DJS0czkBLxnteUF5ywTVVUVpqgZMKXOwacRlSHC0ALXKhNG46qk2lSUsTG6G_Z2of042NjLXXsIHp6UNBM0L0oooCYDtVGNlc7XbR-UhmPs3mn4eu1gPi1ICTYwOQroINChjTHYWnbB7VX4lgTLY95yyFtCivKUt-QgYoMoAuw3Nvx5-Uf1A5xmgao</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492678267</pqid></control><display><type>article</type><title>On Exponential Bases and Frames with Non-linear Phase Functions and Some Applications</title><source>Springer Nature - Complete Springer Journals</source><creator>Gabardo, Jean-Pierre ; Lai, Chun-Kit ; Oussa, Vignon</creator><creatorcontrib>Gabardo, Jean-Pierre ; Lai, Chun-Kit ; Oussa, Vignon</creatorcontrib><description>In this paper, we study the spectrality and frame-spectrality of exponential systems of the type E ( Λ , φ ) = { e 2 π i λ · φ ( x ) : λ ∈ Λ } where the phase function φ is a Borel measurable which is not necessarily linear. A complete characterization of pairs ( Λ , φ ) for which E ( Λ , φ ) is an orthogonal basis or a frame for L 2 ( μ ) is obtained. In particular, we show that the middle-third Cantor measures and the unit disc, each admits an orthogonal basis with a certain non-linear phase. Under a natural regularity condition on the phase functions, when μ is the Lebesgue measure on [0, 1] and Λ = Z , we show that only the standard phase functions φ ( x ) = ± x are the only possible functions that give rise to orthonormal bases. Surprisingly, however we prove that there exist a greater degree of flexibility, even for continuously differentiable phase functions in higher dimensions. For instance, we were able to describe a large class of functions φ defined on R d such that the system E ( Λ , φ ) is an orthonormal basis for L 2 [ 0 , 1 ] d when d ≥ 2 . Moreover, we discuss how our results apply to the discretization problem of unitary representations of locally compact groups for the construction of orthonormal bases. Finally, we conclude the paper by stating several open problems.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-021-09814-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Fourier Analysis ; Linear phase ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2021-04, Vol.27 (2), Article 9</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-e31b24d610414fe5755349bbb7d7f3c308c6213d9bd19d270fa49dc0b82cdb233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-021-09814-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-021-09814-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Gabardo, Jean-Pierre</creatorcontrib><creatorcontrib>Lai, Chun-Kit</creatorcontrib><creatorcontrib>Oussa, Vignon</creatorcontrib><title>On Exponential Bases and Frames with Non-linear Phase Functions and Some Applications</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>In this paper, we study the spectrality and frame-spectrality of exponential systems of the type E ( Λ , φ ) = { e 2 π i λ · φ ( x ) : λ ∈ Λ } where the phase function φ is a Borel measurable which is not necessarily linear. A complete characterization of pairs ( Λ , φ ) for which E ( Λ , φ ) is an orthogonal basis or a frame for L 2 ( μ ) is obtained. In particular, we show that the middle-third Cantor measures and the unit disc, each admits an orthogonal basis with a certain non-linear phase. Under a natural regularity condition on the phase functions, when μ is the Lebesgue measure on [0, 1] and Λ = Z , we show that only the standard phase functions φ ( x ) = ± x are the only possible functions that give rise to orthonormal bases. Surprisingly, however we prove that there exist a greater degree of flexibility, even for continuously differentiable phase functions in higher dimensions. For instance, we were able to describe a large class of functions φ defined on R d such that the system E ( Λ , φ ) is an orthonormal basis for L 2 [ 0 , 1 ] d when d ≥ 2 . Moreover, we discuss how our results apply to the discretization problem of unitary representations of locally compact groups for the construction of orthonormal bases. Finally, we conclude the paper by stating several open problems.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Fourier Analysis</subject><subject>Linear phase</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKdfwKeCz53507TN4xybCsMJuueQJumW0aU16VC_vXer4JuESy6X37k5OQjdEjwhGBf3EWOckRRTKFGSLOVnaEQ4IykvOTmHHucC-lxcoqsYdxhIVrARWq98Mv_qWm9971STPKhoY6K8SRZB7aH9dP02eWl92jhvVUhet0Aki4PXvWv9gL61e5tMu65xWp2m1-iiVk20N7_3GK0X8_fZU7pcPT7PpstUMyz61DJS0czkBLxnteUF5ywTVVUVpqgZMKXOwacRlSHC0ALXKhNG46qk2lSUsTG6G_Z2of042NjLXXsIHp6UNBM0L0oooCYDtVGNlc7XbR-UhmPs3mn4eu1gPi1ICTYwOQroINChjTHYWnbB7VX4lgTLY95yyFtCivKUt-QgYoMoAuw3Nvx5-Uf1A5xmgao</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Gabardo, Jean-Pierre</creator><creator>Lai, Chun-Kit</creator><creator>Oussa, Vignon</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>On Exponential Bases and Frames with Non-linear Phase Functions and Some Applications</title><author>Gabardo, Jean-Pierre ; Lai, Chun-Kit ; Oussa, Vignon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-e31b24d610414fe5755349bbb7d7f3c308c6213d9bd19d270fa49dc0b82cdb233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Fourier Analysis</topic><topic>Linear phase</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gabardo, Jean-Pierre</creatorcontrib><creatorcontrib>Lai, Chun-Kit</creatorcontrib><creatorcontrib>Oussa, Vignon</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gabardo, Jean-Pierre</au><au>Lai, Chun-Kit</au><au>Oussa, Vignon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Exponential Bases and Frames with Non-linear Phase Functions and Some Applications</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>27</volume><issue>2</issue><artnum>9</artnum><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>In this paper, we study the spectrality and frame-spectrality of exponential systems of the type E ( Λ , φ ) = { e 2 π i λ · φ ( x ) : λ ∈ Λ } where the phase function φ is a Borel measurable which is not necessarily linear. A complete characterization of pairs ( Λ , φ ) for which E ( Λ , φ ) is an orthogonal basis or a frame for L 2 ( μ ) is obtained. In particular, we show that the middle-third Cantor measures and the unit disc, each admits an orthogonal basis with a certain non-linear phase. Under a natural regularity condition on the phase functions, when μ is the Lebesgue measure on [0, 1] and Λ = Z , we show that only the standard phase functions φ ( x ) = ± x are the only possible functions that give rise to orthonormal bases. Surprisingly, however we prove that there exist a greater degree of flexibility, even for continuously differentiable phase functions in higher dimensions. For instance, we were able to describe a large class of functions φ defined on R d such that the system E ( Λ , φ ) is an orthonormal basis for L 2 [ 0 , 1 ] d when d ≥ 2 . Moreover, we discuss how our results apply to the discretization problem of unitary representations of locally compact groups for the construction of orthonormal bases. Finally, we conclude the paper by stating several open problems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-021-09814-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 1069-5869
ispartof The Journal of fourier analysis and applications, 2021-04, Vol.27 (2), Article 9
issn 1069-5869
1531-5851
language eng
recordid cdi_proquest_journals_2492678267
source Springer Nature - Complete Springer Journals
subjects Abstract Harmonic Analysis
Approximations and Expansions
Fourier Analysis
Linear phase
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Partial Differential Equations
Signal,Image and Speech Processing
title On Exponential Bases and Frames with Non-linear Phase Functions and Some Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A02%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Exponential%20Bases%20and%20Frames%20with%20Non-linear%20Phase%20Functions%20and%20Some%20Applications&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Gabardo,%20Jean-Pierre&rft.date=2021-04-01&rft.volume=27&rft.issue=2&rft.artnum=9&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-021-09814-5&rft_dat=%3Cgale_proqu%3EA718414017%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492678267&rft_id=info:pmid/&rft_galeid=A718414017&rfr_iscdi=true