The Effect of Atmospheric Transmissivity on Model and Observational Estimates of the Sea Ice Albedo Feedback
The sea ice-albedo feedback (SIAF) is the product of the ice sensitivity (IS), that is, how much the surface albedo in sea ice regions changes as the planet warms, and the radiative sensitivity (RS), that is, how much the top-of-atmosphere radiation changes as the surface albedo changes. We demonstr...
Gespeichert in:
Veröffentlicht in: | Journal of Climate 2020-07, Vol.33 (13), p.5743-5765 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5765 |
---|---|
container_issue | 13 |
container_start_page | 5743 |
container_title | Journal of Climate |
container_volume | 33 |
creator | Donohoe, Aaron Blanchard-Wrigglesworth, Ed Schweiger, Axel Rasch, Philip J. |
description | The sea ice-albedo feedback (SIAF) is the product of the ice sensitivity (IS), that is, how much the surface albedo in sea ice regions changes as the planet warms, and the radiative sensitivity (RS), that is, how much the top-of-atmosphere radiation changes as the surface albedo changes. We demonstrate that the RS calculated from radiative kernels in climate models is reproduced from calculations using the “approximate partial radiative perturbation” method that uses the climatological radiative fluxes at the top of the atmosphere and the assumption that the atmosphere is isotropic to shortwave radiation. This method facilitates the comparison of RS from satellite-based estimates of climatological radiative fluxes with RS estimates across a full suite of coupled climate models and, thus, allows model evaluation of a quantity important in characterizing the climate impact of sea ice concentration changes. The satellite-based RS is within the model range of RS that differs by a factor of 2 across climate models in both the Arctic and Southern Ocean. Observed trends in Arctic sea ice are used to estimate IS, which, in conjunction with the satellite-based RS, yields an SIAF of 0.16 ± 0.04 W m−2 K−1. This Arctic SIAF estimate suggests a modest amplification of future global surface temperature change by approximately 14% relative to a climate system with no SIAF. We calculate the global albedo feedback in climate models using model-specific RS and IS and find a model mean feedback parameter of 0.37 W m−2 K−1, which is 40% larger than the IPCC AR5 estimate based on using RS calculated from radiative kernel calculations in a single climate model. |
doi_str_mv | 10.1175/JCLI-D-19-0674.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_proquest_journals_2492661161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26937931</jstor_id><sourcerecordid>26937931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-e1c6fe14f3d08296ad8eeeff39d6391cf7788b002c3dc3af77b039775ce8a02d3</originalsourceid><addsrcrecordid>eNo9kEFrGzEUhEVJoE7Sey8F0Zw31ZN2pdXROE7r4pBD3LPQSk943fXKkZRA_n12cenpMfDN8GYI-QrsDkA1P36vtpvqvgJdManqO_hEFtBwVrG65hdkwVpdV61qms_kKucDY8AlYwsy7PZI1yGgKzQGuizHmE97TL2ju2THfOxz7t_68k7jSB-jx4Ha0dOnLmN6s6WPox3oOpf-aAvmOaJMgc9o6cYhXQ4d-kgfEH1n3d8bchnskPHLv3tN_jysd6tf1fbp52a13FZOSF4qBCcDQh2EZy3X0voWEUMQ2kuhwQWl2rZjjDvhnbCT7JjQSjUOW8u4F9fk-zk3To-Z7PqCbu_iOE4tDciWc6km6PYMnVJ8ecVczCG-pqlONrzWXEoACRPFzpRLMeeEwZzS1DW9G2BmHt7Mw5t7A9rMw5vZ8u1sOeQS03-eSy2UFiA-AOxkf-U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492661161</pqid></control><display><type>article</type><title>The Effect of Atmospheric Transmissivity on Model and Observational Estimates of the Sea Ice Albedo Feedback</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Donohoe, Aaron ; Blanchard-Wrigglesworth, Ed ; Schweiger, Axel ; Rasch, Philip J.</creator><creatorcontrib>Donohoe, Aaron ; Blanchard-Wrigglesworth, Ed ; Schweiger, Axel ; Rasch, Philip J. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>The sea ice-albedo feedback (SIAF) is the product of the ice sensitivity (IS), that is, how much the surface albedo in sea ice regions changes as the planet warms, and the radiative sensitivity (RS), that is, how much the top-of-atmosphere radiation changes as the surface albedo changes. We demonstrate that the RS calculated from radiative kernels in climate models is reproduced from calculations using the “approximate partial radiative perturbation” method that uses the climatological radiative fluxes at the top of the atmosphere and the assumption that the atmosphere is isotropic to shortwave radiation. This method facilitates the comparison of RS from satellite-based estimates of climatological radiative fluxes with RS estimates across a full suite of coupled climate models and, thus, allows model evaluation of a quantity important in characterizing the climate impact of sea ice concentration changes. The satellite-based RS is within the model range of RS that differs by a factor of 2 across climate models in both the Arctic and Southern Ocean. Observed trends in Arctic sea ice are used to estimate IS, which, in conjunction with the satellite-based RS, yields an SIAF of 0.16 ± 0.04 W m−2 K−1. This Arctic SIAF estimate suggests a modest amplification of future global surface temperature change by approximately 14% relative to a climate system with no SIAF. We calculate the global albedo feedback in climate models using model-specific RS and IS and find a model mean feedback parameter of 0.37 W m−2 K−1, which is 40% larger than the IPCC AR5 estimate based on using RS calculated from radiative kernel calculations in a single climate model.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-19-0674.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Albedo ; Albedo (solar) ; Arctic sea ice ; Arctic, Antarctic, climate change, Climate & Earth System Models ; Atmosphere ; Atmospheric models ; Climate ; Climate models ; Climate system ; Estimates ; Feedback ; Fluxes ; Global temperatures ; Ice environments ; Intergovernmental Panel on Climate Change ; Kernels ; Ocean models ; Perturbation ; Radiation ; Satellites ; Sea ice ; Sea ice concentrations ; Sensitivity ; Short wave radiation ; Surface temperature ; Temperature changes ; Transmissivity</subject><ispartof>Journal of Climate, 2020-07, Vol.33 (13), p.5743-5765</ispartof><rights>2020 American Meteorological Society</rights><rights>Copyright American Meteorological Society Jul 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-e1c6fe14f3d08296ad8eeeff39d6391cf7788b002c3dc3af77b039775ce8a02d3</citedby><cites>FETCH-LOGICAL-c362t-e1c6fe14f3d08296ad8eeeff39d6391cf7788b002c3dc3af77b039775ce8a02d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26937931$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26937931$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,885,3681,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1682267$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Donohoe, Aaron</creatorcontrib><creatorcontrib>Blanchard-Wrigglesworth, Ed</creatorcontrib><creatorcontrib>Schweiger, Axel</creatorcontrib><creatorcontrib>Rasch, Philip J.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>The Effect of Atmospheric Transmissivity on Model and Observational Estimates of the Sea Ice Albedo Feedback</title><title>Journal of Climate</title><description>The sea ice-albedo feedback (SIAF) is the product of the ice sensitivity (IS), that is, how much the surface albedo in sea ice regions changes as the planet warms, and the radiative sensitivity (RS), that is, how much the top-of-atmosphere radiation changes as the surface albedo changes. We demonstrate that the RS calculated from radiative kernels in climate models is reproduced from calculations using the “approximate partial radiative perturbation” method that uses the climatological radiative fluxes at the top of the atmosphere and the assumption that the atmosphere is isotropic to shortwave radiation. This method facilitates the comparison of RS from satellite-based estimates of climatological radiative fluxes with RS estimates across a full suite of coupled climate models and, thus, allows model evaluation of a quantity important in characterizing the climate impact of sea ice concentration changes. The satellite-based RS is within the model range of RS that differs by a factor of 2 across climate models in both the Arctic and Southern Ocean. Observed trends in Arctic sea ice are used to estimate IS, which, in conjunction with the satellite-based RS, yields an SIAF of 0.16 ± 0.04 W m−2 K−1. This Arctic SIAF estimate suggests a modest amplification of future global surface temperature change by approximately 14% relative to a climate system with no SIAF. We calculate the global albedo feedback in climate models using model-specific RS and IS and find a model mean feedback parameter of 0.37 W m−2 K−1, which is 40% larger than the IPCC AR5 estimate based on using RS calculated from radiative kernel calculations in a single climate model.</description><subject>Albedo</subject><subject>Albedo (solar)</subject><subject>Arctic sea ice</subject><subject>Arctic, Antarctic, climate change, Climate & Earth System Models</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Climate</subject><subject>Climate models</subject><subject>Climate system</subject><subject>Estimates</subject><subject>Feedback</subject><subject>Fluxes</subject><subject>Global temperatures</subject><subject>Ice environments</subject><subject>Intergovernmental Panel on Climate Change</subject><subject>Kernels</subject><subject>Ocean models</subject><subject>Perturbation</subject><subject>Radiation</subject><subject>Satellites</subject><subject>Sea ice</subject><subject>Sea ice concentrations</subject><subject>Sensitivity</subject><subject>Short wave radiation</subject><subject>Surface temperature</subject><subject>Temperature changes</subject><subject>Transmissivity</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEFrGzEUhEVJoE7Sey8F0Zw31ZN2pdXROE7r4pBD3LPQSk943fXKkZRA_n12cenpMfDN8GYI-QrsDkA1P36vtpvqvgJdManqO_hEFtBwVrG65hdkwVpdV61qms_kKucDY8AlYwsy7PZI1yGgKzQGuizHmE97TL2ju2THfOxz7t_68k7jSB-jx4Ha0dOnLmN6s6WPox3oOpf-aAvmOaJMgc9o6cYhXQ4d-kgfEH1n3d8bchnskPHLv3tN_jysd6tf1fbp52a13FZOSF4qBCcDQh2EZy3X0voWEUMQ2kuhwQWl2rZjjDvhnbCT7JjQSjUOW8u4F9fk-zk3To-Z7PqCbu_iOE4tDciWc6km6PYMnVJ8ecVczCG-pqlONrzWXEoACRPFzpRLMeeEwZzS1DW9G2BmHt7Mw5t7A9rMw5vZ8u1sOeQS03-eSy2UFiA-AOxkf-U</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Donohoe, Aaron</creator><creator>Blanchard-Wrigglesworth, Ed</creator><creator>Schweiger, Axel</creator><creator>Rasch, Philip J.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>OTOTI</scope></search><sort><creationdate>20200701</creationdate><title>The Effect of Atmospheric Transmissivity on Model and Observational Estimates of the Sea Ice Albedo Feedback</title><author>Donohoe, Aaron ; Blanchard-Wrigglesworth, Ed ; Schweiger, Axel ; Rasch, Philip J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-e1c6fe14f3d08296ad8eeeff39d6391cf7788b002c3dc3af77b039775ce8a02d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Albedo</topic><topic>Albedo (solar)</topic><topic>Arctic sea ice</topic><topic>Arctic, Antarctic, climate change, Climate & Earth System Models</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Climate</topic><topic>Climate models</topic><topic>Climate system</topic><topic>Estimates</topic><topic>Feedback</topic><topic>Fluxes</topic><topic>Global temperatures</topic><topic>Ice environments</topic><topic>Intergovernmental Panel on Climate Change</topic><topic>Kernels</topic><topic>Ocean models</topic><topic>Perturbation</topic><topic>Radiation</topic><topic>Satellites</topic><topic>Sea ice</topic><topic>Sea ice concentrations</topic><topic>Sensitivity</topic><topic>Short wave radiation</topic><topic>Surface temperature</topic><topic>Temperature changes</topic><topic>Transmissivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donohoe, Aaron</creatorcontrib><creatorcontrib>Blanchard-Wrigglesworth, Ed</creatorcontrib><creatorcontrib>Schweiger, Axel</creatorcontrib><creatorcontrib>Rasch, Philip J.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of Climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donohoe, Aaron</au><au>Blanchard-Wrigglesworth, Ed</au><au>Schweiger, Axel</au><au>Rasch, Philip J.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Atmospheric Transmissivity on Model and Observational Estimates of the Sea Ice Albedo Feedback</atitle><jtitle>Journal of Climate</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>33</volume><issue>13</issue><spage>5743</spage><epage>5765</epage><pages>5743-5765</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>The sea ice-albedo feedback (SIAF) is the product of the ice sensitivity (IS), that is, how much the surface albedo in sea ice regions changes as the planet warms, and the radiative sensitivity (RS), that is, how much the top-of-atmosphere radiation changes as the surface albedo changes. We demonstrate that the RS calculated from radiative kernels in climate models is reproduced from calculations using the “approximate partial radiative perturbation” method that uses the climatological radiative fluxes at the top of the atmosphere and the assumption that the atmosphere is isotropic to shortwave radiation. This method facilitates the comparison of RS from satellite-based estimates of climatological radiative fluxes with RS estimates across a full suite of coupled climate models and, thus, allows model evaluation of a quantity important in characterizing the climate impact of sea ice concentration changes. The satellite-based RS is within the model range of RS that differs by a factor of 2 across climate models in both the Arctic and Southern Ocean. Observed trends in Arctic sea ice are used to estimate IS, which, in conjunction with the satellite-based RS, yields an SIAF of 0.16 ± 0.04 W m−2 K−1. This Arctic SIAF estimate suggests a modest amplification of future global surface temperature change by approximately 14% relative to a climate system with no SIAF. We calculate the global albedo feedback in climate models using model-specific RS and IS and find a model mean feedback parameter of 0.37 W m−2 K−1, which is 40% larger than the IPCC AR5 estimate based on using RS calculated from radiative kernel calculations in a single climate model.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-19-0674.1</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of Climate, 2020-07, Vol.33 (13), p.5743-5765 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_journals_2492661161 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing |
subjects | Albedo Albedo (solar) Arctic sea ice Arctic, Antarctic, climate change, Climate & Earth System Models Atmosphere Atmospheric models Climate Climate models Climate system Estimates Feedback Fluxes Global temperatures Ice environments Intergovernmental Panel on Climate Change Kernels Ocean models Perturbation Radiation Satellites Sea ice Sea ice concentrations Sensitivity Short wave radiation Surface temperature Temperature changes Transmissivity |
title | The Effect of Atmospheric Transmissivity on Model and Observational Estimates of the Sea Ice Albedo Feedback |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Atmospheric%20Transmissivity%20on%20Model%20and%20Observational%20Estimates%20of%20the%20Sea%20Ice%20Albedo%20Feedback&rft.jtitle=Journal%20of%20Climate&rft.au=Donohoe,%20Aaron&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2020-07-01&rft.volume=33&rft.issue=13&rft.spage=5743&rft.epage=5765&rft.pages=5743-5765&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-19-0674.1&rft_dat=%3Cjstor_osti_%3E26937931%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492661161&rft_id=info:pmid/&rft_jstor_id=26937931&rfr_iscdi=true |