Evaluation of the Bulk Mass Flux Formulation Using Large-Eddy Simulations
In this study, bulk mass flux formulations for turbulent fluxes are evaluated for shallow and deep convection using large-eddy simulation data. The bulk mass flux approximation neglects two sources of variability: the interobject variability due to differences between the average properties of diffe...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2020-06, Vol.77 (6), p.2115-2137 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2137 |
---|---|
container_issue | 6 |
container_start_page | 2115 |
container_title | Journal of the atmospheric sciences |
container_volume | 77 |
creator | Gu, Jian-Feng Plant, Robert Stephen Holloway, Christopher E. Jones, Todd R. Stirling, Alison Clark, Peter A. Woolnough, Steven J. Webb, Thomas L. |
description | In this study, bulk mass flux formulations for turbulent fluxes are evaluated for shallow and deep convection using large-eddy simulation data. The bulk mass flux approximation neglects two sources of variability: the interobject variability due to differences between the average properties of different cloud objects, and the intraobject variability due to perturbations within each cloud object. Using a simple cloud–environment decomposition, the interobject and intraobject contributions to the heat flux are comparable in magnitude with that from the bulk mass flux approximation, but do not share a similar vertical distribution, and so cannot be parameterized with a rescaling method. A downgradient assumption is also not appropriate to parameterize the neglected flux contributions because a nonnegligible part is associated with nonlocal buoyant structures. A spectral analysis further suggests the presence of fine structures within the clouds. These points motivate investigations in which the vertical transports are decomposed based on the distribution of vertical velocity. As a result, a “core-cloak” conceptual model is proposed to improve the representation of total vertical fluxes, composed of a strong and a weak draft for both the updrafts and downdrafts. It is shown that the core-cloak representation can well capture the magnitude and vertical distribution of heat and moisture fluxes for both shallow and deep convection. |
doi_str_mv | 10.1175/JAS-D-19-0224.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2492658360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492658360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-90aacf481f5ba3b57d6014eea44193006f56aeed82bf8a3a1ab5cea1dc491bc3</originalsourceid><addsrcrecordid>eNo1kE1PwzAMhiMEEmNw5hqJc7Y4H11zHPuAoSEOG-fIbZPR0a0jaRH793Qa-GLJ7yNbfgi5Bz4AGOnhy3jFpgwM40KoAVyQHmjBGVeJuSQ93k2ZMiK9JjcxbnlXYgQ9sph9Y9ViU9Z7WnvafDj62Faf9BVjpPOq_aHzOuza6ky8x3K_oUsMG8dmRXGkq_I_i7fkymMV3d1f75P1fLaePLPl29NiMl6yXAJvmOGIuVcpeJ2hzPSoSDgo51ApMJLzxOsEnStSkfkUJQJmOncIRa4MZLnsk4fz2kOov1oXG7ut27DvLlrR_ZfoVCa8o4ZnKg91jMF5ewjlDsPRArcnXbbTZacWjD3psiB_AV4kXbE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492658360</pqid></control><display><type>article</type><title>Evaluation of the Bulk Mass Flux Formulation Using Large-Eddy Simulations</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Gu, Jian-Feng ; Plant, Robert Stephen ; Holloway, Christopher E. ; Jones, Todd R. ; Stirling, Alison ; Clark, Peter A. ; Woolnough, Steven J. ; Webb, Thomas L.</creator><creatorcontrib>Gu, Jian-Feng ; Plant, Robert Stephen ; Holloway, Christopher E. ; Jones, Todd R. ; Stirling, Alison ; Clark, Peter A. ; Woolnough, Steven J. ; Webb, Thomas L.</creatorcontrib><description>In this study, bulk mass flux formulations for turbulent fluxes are evaluated for shallow and deep convection using large-eddy simulation data. The bulk mass flux approximation neglects two sources of variability: the interobject variability due to differences between the average properties of different cloud objects, and the intraobject variability due to perturbations within each cloud object. Using a simple cloud–environment decomposition, the interobject and intraobject contributions to the heat flux are comparable in magnitude with that from the bulk mass flux approximation, but do not share a similar vertical distribution, and so cannot be parameterized with a rescaling method. A downgradient assumption is also not appropriate to parameterize the neglected flux contributions because a nonnegligible part is associated with nonlocal buoyant structures. A spectral analysis further suggests the presence of fine structures within the clouds. These points motivate investigations in which the vertical transports are decomposed based on the distribution of vertical velocity. As a result, a “core-cloak” conceptual model is proposed to improve the representation of total vertical fluxes, composed of a strong and a weak draft for both the updrafts and downdrafts. It is shown that the core-cloak representation can well capture the magnitude and vertical distribution of heat and moisture fluxes for both shallow and deep convection.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-19-0224.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Approximation ; Clouds ; Convection ; Decomposition ; Design ; Distribution ; Downdraft ; Equilibrium ; Fluctuations ; Heat flux ; Heat transfer ; Large eddy simulation ; Large eddy simulations ; Mass ; Mass flux ; Mathematical analysis ; Oceanic eddies ; Perturbation ; Representations ; Rescaling ; Scaling ; Simulation ; Spectral analysis ; Spectrum analysis ; Turbulent fluxes ; Updraft ; Variability ; Vertical distribution ; Vertical velocities ; Vortices</subject><ispartof>Journal of the atmospheric sciences, 2020-06, Vol.77 (6), p.2115-2137</ispartof><rights>Copyright American Meteorological Society Jun 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-90aacf481f5ba3b57d6014eea44193006f56aeed82bf8a3a1ab5cea1dc491bc3</citedby><cites>FETCH-LOGICAL-c310t-90aacf481f5ba3b57d6014eea44193006f56aeed82bf8a3a1ab5cea1dc491bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3680,27923,27924</link.rule.ids></links><search><creatorcontrib>Gu, Jian-Feng</creatorcontrib><creatorcontrib>Plant, Robert Stephen</creatorcontrib><creatorcontrib>Holloway, Christopher E.</creatorcontrib><creatorcontrib>Jones, Todd R.</creatorcontrib><creatorcontrib>Stirling, Alison</creatorcontrib><creatorcontrib>Clark, Peter A.</creatorcontrib><creatorcontrib>Woolnough, Steven J.</creatorcontrib><creatorcontrib>Webb, Thomas L.</creatorcontrib><title>Evaluation of the Bulk Mass Flux Formulation Using Large-Eddy Simulations</title><title>Journal of the atmospheric sciences</title><description>In this study, bulk mass flux formulations for turbulent fluxes are evaluated for shallow and deep convection using large-eddy simulation data. The bulk mass flux approximation neglects two sources of variability: the interobject variability due to differences between the average properties of different cloud objects, and the intraobject variability due to perturbations within each cloud object. Using a simple cloud–environment decomposition, the interobject and intraobject contributions to the heat flux are comparable in magnitude with that from the bulk mass flux approximation, but do not share a similar vertical distribution, and so cannot be parameterized with a rescaling method. A downgradient assumption is also not appropriate to parameterize the neglected flux contributions because a nonnegligible part is associated with nonlocal buoyant structures. A spectral analysis further suggests the presence of fine structures within the clouds. These points motivate investigations in which the vertical transports are decomposed based on the distribution of vertical velocity. As a result, a “core-cloak” conceptual model is proposed to improve the representation of total vertical fluxes, composed of a strong and a weak draft for both the updrafts and downdrafts. It is shown that the core-cloak representation can well capture the magnitude and vertical distribution of heat and moisture fluxes for both shallow and deep convection.</description><subject>Approximation</subject><subject>Clouds</subject><subject>Convection</subject><subject>Decomposition</subject><subject>Design</subject><subject>Distribution</subject><subject>Downdraft</subject><subject>Equilibrium</subject><subject>Fluctuations</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Large eddy simulation</subject><subject>Large eddy simulations</subject><subject>Mass</subject><subject>Mass flux</subject><subject>Mathematical analysis</subject><subject>Oceanic eddies</subject><subject>Perturbation</subject><subject>Representations</subject><subject>Rescaling</subject><subject>Scaling</subject><subject>Simulation</subject><subject>Spectral analysis</subject><subject>Spectrum analysis</subject><subject>Turbulent fluxes</subject><subject>Updraft</subject><subject>Variability</subject><subject>Vertical distribution</subject><subject>Vertical velocities</subject><subject>Vortices</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo1kE1PwzAMhiMEEmNw5hqJc7Y4H11zHPuAoSEOG-fIbZPR0a0jaRH793Qa-GLJ7yNbfgi5Bz4AGOnhy3jFpgwM40KoAVyQHmjBGVeJuSQ93k2ZMiK9JjcxbnlXYgQ9sph9Y9ViU9Z7WnvafDj62Faf9BVjpPOq_aHzOuza6ky8x3K_oUsMG8dmRXGkq_I_i7fkymMV3d1f75P1fLaePLPl29NiMl6yXAJvmOGIuVcpeJ2hzPSoSDgo51ApMJLzxOsEnStSkfkUJQJmOncIRa4MZLnsk4fz2kOov1oXG7ut27DvLlrR_ZfoVCa8o4ZnKg91jMF5ewjlDsPRArcnXbbTZacWjD3psiB_AV4kXbE</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Gu, Jian-Feng</creator><creator>Plant, Robert Stephen</creator><creator>Holloway, Christopher E.</creator><creator>Jones, Todd R.</creator><creator>Stirling, Alison</creator><creator>Clark, Peter A.</creator><creator>Woolnough, Steven J.</creator><creator>Webb, Thomas L.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>202006</creationdate><title>Evaluation of the Bulk Mass Flux Formulation Using Large-Eddy Simulations</title><author>Gu, Jian-Feng ; Plant, Robert Stephen ; Holloway, Christopher E. ; Jones, Todd R. ; Stirling, Alison ; Clark, Peter A. ; Woolnough, Steven J. ; Webb, Thomas L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-90aacf481f5ba3b57d6014eea44193006f56aeed82bf8a3a1ab5cea1dc491bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Clouds</topic><topic>Convection</topic><topic>Decomposition</topic><topic>Design</topic><topic>Distribution</topic><topic>Downdraft</topic><topic>Equilibrium</topic><topic>Fluctuations</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Large eddy simulation</topic><topic>Large eddy simulations</topic><topic>Mass</topic><topic>Mass flux</topic><topic>Mathematical analysis</topic><topic>Oceanic eddies</topic><topic>Perturbation</topic><topic>Representations</topic><topic>Rescaling</topic><topic>Scaling</topic><topic>Simulation</topic><topic>Spectral analysis</topic><topic>Spectrum analysis</topic><topic>Turbulent fluxes</topic><topic>Updraft</topic><topic>Variability</topic><topic>Vertical distribution</topic><topic>Vertical velocities</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Jian-Feng</creatorcontrib><creatorcontrib>Plant, Robert Stephen</creatorcontrib><creatorcontrib>Holloway, Christopher E.</creatorcontrib><creatorcontrib>Jones, Todd R.</creatorcontrib><creatorcontrib>Stirling, Alison</creatorcontrib><creatorcontrib>Clark, Peter A.</creatorcontrib><creatorcontrib>Woolnough, Steven J.</creatorcontrib><creatorcontrib>Webb, Thomas L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Jian-Feng</au><au>Plant, Robert Stephen</au><au>Holloway, Christopher E.</au><au>Jones, Todd R.</au><au>Stirling, Alison</au><au>Clark, Peter A.</au><au>Woolnough, Steven J.</au><au>Webb, Thomas L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of the Bulk Mass Flux Formulation Using Large-Eddy Simulations</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2020-06</date><risdate>2020</risdate><volume>77</volume><issue>6</issue><spage>2115</spage><epage>2137</epage><pages>2115-2137</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><abstract>In this study, bulk mass flux formulations for turbulent fluxes are evaluated for shallow and deep convection using large-eddy simulation data. The bulk mass flux approximation neglects two sources of variability: the interobject variability due to differences between the average properties of different cloud objects, and the intraobject variability due to perturbations within each cloud object. Using a simple cloud–environment decomposition, the interobject and intraobject contributions to the heat flux are comparable in magnitude with that from the bulk mass flux approximation, but do not share a similar vertical distribution, and so cannot be parameterized with a rescaling method. A downgradient assumption is also not appropriate to parameterize the neglected flux contributions because a nonnegligible part is associated with nonlocal buoyant structures. A spectral analysis further suggests the presence of fine structures within the clouds. These points motivate investigations in which the vertical transports are decomposed based on the distribution of vertical velocity. As a result, a “core-cloak” conceptual model is proposed to improve the representation of total vertical fluxes, composed of a strong and a weak draft for both the updrafts and downdrafts. It is shown that the core-cloak representation can well capture the magnitude and vertical distribution of heat and moisture fluxes for both shallow and deep convection.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-19-0224.1</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4928 |
ispartof | Journal of the atmospheric sciences, 2020-06, Vol.77 (6), p.2115-2137 |
issn | 0022-4928 1520-0469 |
language | eng |
recordid | cdi_proquest_journals_2492658360 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Approximation Clouds Convection Decomposition Design Distribution Downdraft Equilibrium Fluctuations Heat flux Heat transfer Large eddy simulation Large eddy simulations Mass Mass flux Mathematical analysis Oceanic eddies Perturbation Representations Rescaling Scaling Simulation Spectral analysis Spectrum analysis Turbulent fluxes Updraft Variability Vertical distribution Vertical velocities Vortices |
title | Evaluation of the Bulk Mass Flux Formulation Using Large-Eddy Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20the%20Bulk%20Mass%20Flux%20Formulation%20Using%20Large-Eddy%20Simulations&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Gu,%20Jian-Feng&rft.date=2020-06&rft.volume=77&rft.issue=6&rft.spage=2115&rft.epage=2137&rft.pages=2115-2137&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-19-0224.1&rft_dat=%3Cproquest_cross%3E2492658360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492658360&rft_id=info:pmid/&rfr_iscdi=true |