Efficient Infrared Solar Cells Employing Quantum Dot Solids with Strong Inter‐Dot Coupling and Efficient Passivation

Lead chalcogenide quantum dot (QD) infrared (IR) solar cells are promising devices for breaking through the theoretical efficiency limit of single‐junction solar cells by harvesting the low‐energy IR photons that cannot be utilized by common devices. However, the device performance of QD IR photovol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-02, Vol.31 (9), p.n/a
Hauptverfasser: Liu, Sisi, Zhang, Chongjian, Li, Shuangyuan, Xia, Yong, Wang, Kang, Xiong, Kao, Tang, Haodong, Lian, Linyuan, Liu, Xinxing, Li, Ming‐Yu, Tan, Manlin, Gao, Liang, Niu, Guangda, Liu, Huan, Song, Haisheng, Zhang, Daoli, Gao, Jianbo, Lan, Xinzheng, Wang, Kai, Sun, Xiao Wei, Yang, Ye, Tang, Jiang, Zhang, Jianbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Advanced functional materials
container_volume 31
creator Liu, Sisi
Zhang, Chongjian
Li, Shuangyuan
Xia, Yong
Wang, Kang
Xiong, Kao
Tang, Haodong
Lian, Linyuan
Liu, Xinxing
Li, Ming‐Yu
Tan, Manlin
Gao, Liang
Niu, Guangda
Liu, Huan
Song, Haisheng
Zhang, Daoli
Gao, Jianbo
Lan, Xinzheng
Wang, Kai
Sun, Xiao Wei
Yang, Ye
Tang, Jiang
Zhang, Jianbing
description Lead chalcogenide quantum dot (QD) infrared (IR) solar cells are promising devices for breaking through the theoretical efficiency limit of single‐junction solar cells by harvesting the low‐energy IR photons that cannot be utilized by common devices. However, the device performance of QD IR photovoltaic is limited by the restrictive relation between open‐circuit voltages (VOC) and short circuit current densities (JSC), caused by the contradiction between surface passivation and electronic coupling of QD solids. Here, a strategy is developed to decouple this restriction via epitaxially coating a thin PbS shell over the PbSe QDs (PbSe/PbS QDs) combined with in situ halide passivation. The strong electronic coupling from the PbSe core gives rise to significant carrier delocalization, which guarantees effective carrier transport. Benefited from the protection of PbS shell and in situ halide passivation, excellent trap‐state control of QDs is eventually achieved after the ligand exchange. By a fine control of the PbS shell thickness, outstanding IR JSC of 6.38 mA cm−2 and IR VOC of 0.347 V are simultaneously achieved under the 1100 nm‐filtered solar illumination, providing a new route to unfreeze the trade‐off between VOC and JSC limited by the photoactive layer with a given bandgap. PbSe quantum dot (QD) infrared solar cells are promising devices for improved photovoltaic performance by harvesting the low‐energy infrared photons unabsorbed by common solar cells. Here, a strategy to protect PbSe QDs is developed via combination of epitaxially coating a thin PbS shell and in situ halide passivation, breaking the VOC–JSC trade‐off in the traditional QD solar cells.
doi_str_mv 10.1002/adfm.202006864
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2492566928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492566928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-19b5883e0747de83db87bf69776b0535c3abeb8cc5b6cb25a47ff348185ba4de3</originalsourceid><addsrcrecordid>eNqFkE9LwzAYh4soOKdXzwHPm_nTJulxdJsOJipT8FaSNtGMtqlJu7GbH8HP6CexZbIdPb0v_J7nfeEXBNcIjhGE-FbkuhxjiCGknIYnwQBRREcEYn562NHbeXDh_RpCxBgJB8FmprXJjKoasKi0E07lYGUL4UCiisKDWVkXdmeqd_DciqppSzC1TU-Y3IOtaT7AqnG2ixdVo9zP13cfJ7ati94RVQ6OD56E92YjGmOry-BMi8Krq785DF7ns5fkfrR8vFskk-UoI4iFIxTLiHOiIAtZrjjJJWdS05gxKmFEoowIqSTPskjSTOJIhExrEnLEIynCXJFhcLO_Wzv72SrfpGvbuqp7meIwxhGlMeYdNd5TmbPeO6XT2plSuF2KYNp3m_bdpoduOyHeC1tTqN0_dDqZzh-O7i-Ox4AR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492566928</pqid></control><display><type>article</type><title>Efficient Infrared Solar Cells Employing Quantum Dot Solids with Strong Inter‐Dot Coupling and Efficient Passivation</title><source>Wiley Online Library All Journals</source><creator>Liu, Sisi ; Zhang, Chongjian ; Li, Shuangyuan ; Xia, Yong ; Wang, Kang ; Xiong, Kao ; Tang, Haodong ; Lian, Linyuan ; Liu, Xinxing ; Li, Ming‐Yu ; Tan, Manlin ; Gao, Liang ; Niu, Guangda ; Liu, Huan ; Song, Haisheng ; Zhang, Daoli ; Gao, Jianbo ; Lan, Xinzheng ; Wang, Kai ; Sun, Xiao Wei ; Yang, Ye ; Tang, Jiang ; Zhang, Jianbing</creator><creatorcontrib>Liu, Sisi ; Zhang, Chongjian ; Li, Shuangyuan ; Xia, Yong ; Wang, Kang ; Xiong, Kao ; Tang, Haodong ; Lian, Linyuan ; Liu, Xinxing ; Li, Ming‐Yu ; Tan, Manlin ; Gao, Liang ; Niu, Guangda ; Liu, Huan ; Song, Haisheng ; Zhang, Daoli ; Gao, Jianbo ; Lan, Xinzheng ; Wang, Kai ; Sun, Xiao Wei ; Yang, Ye ; Tang, Jiang ; Zhang, Jianbing</creatorcontrib><description>Lead chalcogenide quantum dot (QD) infrared (IR) solar cells are promising devices for breaking through the theoretical efficiency limit of single‐junction solar cells by harvesting the low‐energy IR photons that cannot be utilized by common devices. However, the device performance of QD IR photovoltaic is limited by the restrictive relation between open‐circuit voltages (VOC) and short circuit current densities (JSC), caused by the contradiction between surface passivation and electronic coupling of QD solids. Here, a strategy is developed to decouple this restriction via epitaxially coating a thin PbS shell over the PbSe QDs (PbSe/PbS QDs) combined with in situ halide passivation. The strong electronic coupling from the PbSe core gives rise to significant carrier delocalization, which guarantees effective carrier transport. Benefited from the protection of PbS shell and in situ halide passivation, excellent trap‐state control of QDs is eventually achieved after the ligand exchange. By a fine control of the PbS shell thickness, outstanding IR JSC of 6.38 mA cm−2 and IR VOC of 0.347 V are simultaneously achieved under the 1100 nm‐filtered solar illumination, providing a new route to unfreeze the trade‐off between VOC and JSC limited by the photoactive layer with a given bandgap. PbSe quantum dot (QD) infrared solar cells are promising devices for improved photovoltaic performance by harvesting the low‐energy infrared photons unabsorbed by common solar cells. Here, a strategy to protect PbSe QDs is developed via combination of epitaxially coating a thin PbS shell and in situ halide passivation, breaking the VOC–JSC trade‐off in the traditional QD solar cells.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202006864</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carrier transport ; Circuits ; Coupling ; Energy harvesting ; infrared solar cells ; inter‐dot coupling ; Lead selenides ; Materials science ; Passivity ; PbSe ; PbSe/PbS core/shell ; Photovoltaic cells ; Quantum dots ; Short circuit currents ; Solar cells</subject><ispartof>Advanced functional materials, 2021-02, Vol.31 (9), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-19b5883e0747de83db87bf69776b0535c3abeb8cc5b6cb25a47ff348185ba4de3</citedby><cites>FETCH-LOGICAL-c3174-19b5883e0747de83db87bf69776b0535c3abeb8cc5b6cb25a47ff348185ba4de3</cites><orcidid>0000-0003-0642-3939 ; 0000-0002-2840-1880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202006864$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202006864$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Liu, Sisi</creatorcontrib><creatorcontrib>Zhang, Chongjian</creatorcontrib><creatorcontrib>Li, Shuangyuan</creatorcontrib><creatorcontrib>Xia, Yong</creatorcontrib><creatorcontrib>Wang, Kang</creatorcontrib><creatorcontrib>Xiong, Kao</creatorcontrib><creatorcontrib>Tang, Haodong</creatorcontrib><creatorcontrib>Lian, Linyuan</creatorcontrib><creatorcontrib>Liu, Xinxing</creatorcontrib><creatorcontrib>Li, Ming‐Yu</creatorcontrib><creatorcontrib>Tan, Manlin</creatorcontrib><creatorcontrib>Gao, Liang</creatorcontrib><creatorcontrib>Niu, Guangda</creatorcontrib><creatorcontrib>Liu, Huan</creatorcontrib><creatorcontrib>Song, Haisheng</creatorcontrib><creatorcontrib>Zhang, Daoli</creatorcontrib><creatorcontrib>Gao, Jianbo</creatorcontrib><creatorcontrib>Lan, Xinzheng</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Sun, Xiao Wei</creatorcontrib><creatorcontrib>Yang, Ye</creatorcontrib><creatorcontrib>Tang, Jiang</creatorcontrib><creatorcontrib>Zhang, Jianbing</creatorcontrib><title>Efficient Infrared Solar Cells Employing Quantum Dot Solids with Strong Inter‐Dot Coupling and Efficient Passivation</title><title>Advanced functional materials</title><description>Lead chalcogenide quantum dot (QD) infrared (IR) solar cells are promising devices for breaking through the theoretical efficiency limit of single‐junction solar cells by harvesting the low‐energy IR photons that cannot be utilized by common devices. However, the device performance of QD IR photovoltaic is limited by the restrictive relation between open‐circuit voltages (VOC) and short circuit current densities (JSC), caused by the contradiction between surface passivation and electronic coupling of QD solids. Here, a strategy is developed to decouple this restriction via epitaxially coating a thin PbS shell over the PbSe QDs (PbSe/PbS QDs) combined with in situ halide passivation. The strong electronic coupling from the PbSe core gives rise to significant carrier delocalization, which guarantees effective carrier transport. Benefited from the protection of PbS shell and in situ halide passivation, excellent trap‐state control of QDs is eventually achieved after the ligand exchange. By a fine control of the PbS shell thickness, outstanding IR JSC of 6.38 mA cm−2 and IR VOC of 0.347 V are simultaneously achieved under the 1100 nm‐filtered solar illumination, providing a new route to unfreeze the trade‐off between VOC and JSC limited by the photoactive layer with a given bandgap. PbSe quantum dot (QD) infrared solar cells are promising devices for improved photovoltaic performance by harvesting the low‐energy infrared photons unabsorbed by common solar cells. Here, a strategy to protect PbSe QDs is developed via combination of epitaxially coating a thin PbS shell and in situ halide passivation, breaking the VOC–JSC trade‐off in the traditional QD solar cells.</description><subject>Carrier transport</subject><subject>Circuits</subject><subject>Coupling</subject><subject>Energy harvesting</subject><subject>infrared solar cells</subject><subject>inter‐dot coupling</subject><subject>Lead selenides</subject><subject>Materials science</subject><subject>Passivity</subject><subject>PbSe</subject><subject>PbSe/PbS core/shell</subject><subject>Photovoltaic cells</subject><subject>Quantum dots</subject><subject>Short circuit currents</subject><subject>Solar cells</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LwzAYh4soOKdXzwHPm_nTJulxdJsOJipT8FaSNtGMtqlJu7GbH8HP6CexZbIdPb0v_J7nfeEXBNcIjhGE-FbkuhxjiCGknIYnwQBRREcEYn562NHbeXDh_RpCxBgJB8FmprXJjKoasKi0E07lYGUL4UCiisKDWVkXdmeqd_DciqppSzC1TU-Y3IOtaT7AqnG2ixdVo9zP13cfJ7ati94RVQ6OD56E92YjGmOry-BMi8Krq785DF7ns5fkfrR8vFskk-UoI4iFIxTLiHOiIAtZrjjJJWdS05gxKmFEoowIqSTPskjSTOJIhExrEnLEIynCXJFhcLO_Wzv72SrfpGvbuqp7meIwxhGlMeYdNd5TmbPeO6XT2plSuF2KYNp3m_bdpoduOyHeC1tTqN0_dDqZzh-O7i-Ox4AR</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Liu, Sisi</creator><creator>Zhang, Chongjian</creator><creator>Li, Shuangyuan</creator><creator>Xia, Yong</creator><creator>Wang, Kang</creator><creator>Xiong, Kao</creator><creator>Tang, Haodong</creator><creator>Lian, Linyuan</creator><creator>Liu, Xinxing</creator><creator>Li, Ming‐Yu</creator><creator>Tan, Manlin</creator><creator>Gao, Liang</creator><creator>Niu, Guangda</creator><creator>Liu, Huan</creator><creator>Song, Haisheng</creator><creator>Zhang, Daoli</creator><creator>Gao, Jianbo</creator><creator>Lan, Xinzheng</creator><creator>Wang, Kai</creator><creator>Sun, Xiao Wei</creator><creator>Yang, Ye</creator><creator>Tang, Jiang</creator><creator>Zhang, Jianbing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0642-3939</orcidid><orcidid>https://orcid.org/0000-0002-2840-1880</orcidid></search><sort><creationdate>20210201</creationdate><title>Efficient Infrared Solar Cells Employing Quantum Dot Solids with Strong Inter‐Dot Coupling and Efficient Passivation</title><author>Liu, Sisi ; Zhang, Chongjian ; Li, Shuangyuan ; Xia, Yong ; Wang, Kang ; Xiong, Kao ; Tang, Haodong ; Lian, Linyuan ; Liu, Xinxing ; Li, Ming‐Yu ; Tan, Manlin ; Gao, Liang ; Niu, Guangda ; Liu, Huan ; Song, Haisheng ; Zhang, Daoli ; Gao, Jianbo ; Lan, Xinzheng ; Wang, Kai ; Sun, Xiao Wei ; Yang, Ye ; Tang, Jiang ; Zhang, Jianbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-19b5883e0747de83db87bf69776b0535c3abeb8cc5b6cb25a47ff348185ba4de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carrier transport</topic><topic>Circuits</topic><topic>Coupling</topic><topic>Energy harvesting</topic><topic>infrared solar cells</topic><topic>inter‐dot coupling</topic><topic>Lead selenides</topic><topic>Materials science</topic><topic>Passivity</topic><topic>PbSe</topic><topic>PbSe/PbS core/shell</topic><topic>Photovoltaic cells</topic><topic>Quantum dots</topic><topic>Short circuit currents</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Sisi</creatorcontrib><creatorcontrib>Zhang, Chongjian</creatorcontrib><creatorcontrib>Li, Shuangyuan</creatorcontrib><creatorcontrib>Xia, Yong</creatorcontrib><creatorcontrib>Wang, Kang</creatorcontrib><creatorcontrib>Xiong, Kao</creatorcontrib><creatorcontrib>Tang, Haodong</creatorcontrib><creatorcontrib>Lian, Linyuan</creatorcontrib><creatorcontrib>Liu, Xinxing</creatorcontrib><creatorcontrib>Li, Ming‐Yu</creatorcontrib><creatorcontrib>Tan, Manlin</creatorcontrib><creatorcontrib>Gao, Liang</creatorcontrib><creatorcontrib>Niu, Guangda</creatorcontrib><creatorcontrib>Liu, Huan</creatorcontrib><creatorcontrib>Song, Haisheng</creatorcontrib><creatorcontrib>Zhang, Daoli</creatorcontrib><creatorcontrib>Gao, Jianbo</creatorcontrib><creatorcontrib>Lan, Xinzheng</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Sun, Xiao Wei</creatorcontrib><creatorcontrib>Yang, Ye</creatorcontrib><creatorcontrib>Tang, Jiang</creatorcontrib><creatorcontrib>Zhang, Jianbing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Sisi</au><au>Zhang, Chongjian</au><au>Li, Shuangyuan</au><au>Xia, Yong</au><au>Wang, Kang</au><au>Xiong, Kao</au><au>Tang, Haodong</au><au>Lian, Linyuan</au><au>Liu, Xinxing</au><au>Li, Ming‐Yu</au><au>Tan, Manlin</au><au>Gao, Liang</au><au>Niu, Guangda</au><au>Liu, Huan</au><au>Song, Haisheng</au><au>Zhang, Daoli</au><au>Gao, Jianbo</au><au>Lan, Xinzheng</au><au>Wang, Kai</au><au>Sun, Xiao Wei</au><au>Yang, Ye</au><au>Tang, Jiang</au><au>Zhang, Jianbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Infrared Solar Cells Employing Quantum Dot Solids with Strong Inter‐Dot Coupling and Efficient Passivation</atitle><jtitle>Advanced functional materials</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>31</volume><issue>9</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Lead chalcogenide quantum dot (QD) infrared (IR) solar cells are promising devices for breaking through the theoretical efficiency limit of single‐junction solar cells by harvesting the low‐energy IR photons that cannot be utilized by common devices. However, the device performance of QD IR photovoltaic is limited by the restrictive relation between open‐circuit voltages (VOC) and short circuit current densities (JSC), caused by the contradiction between surface passivation and electronic coupling of QD solids. Here, a strategy is developed to decouple this restriction via epitaxially coating a thin PbS shell over the PbSe QDs (PbSe/PbS QDs) combined with in situ halide passivation. The strong electronic coupling from the PbSe core gives rise to significant carrier delocalization, which guarantees effective carrier transport. Benefited from the protection of PbS shell and in situ halide passivation, excellent trap‐state control of QDs is eventually achieved after the ligand exchange. By a fine control of the PbS shell thickness, outstanding IR JSC of 6.38 mA cm−2 and IR VOC of 0.347 V are simultaneously achieved under the 1100 nm‐filtered solar illumination, providing a new route to unfreeze the trade‐off between VOC and JSC limited by the photoactive layer with a given bandgap. PbSe quantum dot (QD) infrared solar cells are promising devices for improved photovoltaic performance by harvesting the low‐energy infrared photons unabsorbed by common solar cells. Here, a strategy to protect PbSe QDs is developed via combination of epitaxially coating a thin PbS shell and in situ halide passivation, breaking the VOC–JSC trade‐off in the traditional QD solar cells.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202006864</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0642-3939</orcidid><orcidid>https://orcid.org/0000-0002-2840-1880</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-02, Vol.31 (9), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2492566928
source Wiley Online Library All Journals
subjects Carrier transport
Circuits
Coupling
Energy harvesting
infrared solar cells
inter‐dot coupling
Lead selenides
Materials science
Passivity
PbSe
PbSe/PbS core/shell
Photovoltaic cells
Quantum dots
Short circuit currents
Solar cells
title Efficient Infrared Solar Cells Employing Quantum Dot Solids with Strong Inter‐Dot Coupling and Efficient Passivation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Infrared%20Solar%20Cells%20Employing%20Quantum%20Dot%20Solids%20with%20Strong%20Inter%E2%80%90Dot%20Coupling%20and%20Efficient%20Passivation&rft.jtitle=Advanced%20functional%20materials&rft.au=Liu,%20Sisi&rft.date=2021-02-01&rft.volume=31&rft.issue=9&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202006864&rft_dat=%3Cproquest_cross%3E2492566928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492566928&rft_id=info:pmid/&rfr_iscdi=true