Efficient Infrared Solar Cells Employing Quantum Dot Solids with Strong Inter‐Dot Coupling and Efficient Passivation
Lead chalcogenide quantum dot (QD) infrared (IR) solar cells are promising devices for breaking through the theoretical efficiency limit of single‐junction solar cells by harvesting the low‐energy IR photons that cannot be utilized by common devices. However, the device performance of QD IR photovol...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-02, Vol.31 (9), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Liu, Sisi Zhang, Chongjian Li, Shuangyuan Xia, Yong Wang, Kang Xiong, Kao Tang, Haodong Lian, Linyuan Liu, Xinxing Li, Ming‐Yu Tan, Manlin Gao, Liang Niu, Guangda Liu, Huan Song, Haisheng Zhang, Daoli Gao, Jianbo Lan, Xinzheng Wang, Kai Sun, Xiao Wei Yang, Ye Tang, Jiang Zhang, Jianbing |
description | Lead chalcogenide quantum dot (QD) infrared (IR) solar cells are promising devices for breaking through the theoretical efficiency limit of single‐junction solar cells by harvesting the low‐energy IR photons that cannot be utilized by common devices. However, the device performance of QD IR photovoltaic is limited by the restrictive relation between open‐circuit voltages (VOC) and short circuit current densities (JSC), caused by the contradiction between surface passivation and electronic coupling of QD solids. Here, a strategy is developed to decouple this restriction via epitaxially coating a thin PbS shell over the PbSe QDs (PbSe/PbS QDs) combined with in situ halide passivation. The strong electronic coupling from the PbSe core gives rise to significant carrier delocalization, which guarantees effective carrier transport. Benefited from the protection of PbS shell and in situ halide passivation, excellent trap‐state control of QDs is eventually achieved after the ligand exchange. By a fine control of the PbS shell thickness, outstanding IR JSC of 6.38 mA cm−2 and IR VOC of 0.347 V are simultaneously achieved under the 1100 nm‐filtered solar illumination, providing a new route to unfreeze the trade‐off between VOC and JSC limited by the photoactive layer with a given bandgap.
PbSe quantum dot (QD) infrared solar cells are promising devices for improved photovoltaic performance by harvesting the low‐energy infrared photons unabsorbed by common solar cells. Here, a strategy to protect PbSe QDs is developed via combination of epitaxially coating a thin PbS shell and in situ halide passivation, breaking the VOC–JSC trade‐off in the traditional QD solar cells. |
doi_str_mv | 10.1002/adfm.202006864 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2492566928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492566928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-19b5883e0747de83db87bf69776b0535c3abeb8cc5b6cb25a47ff348185ba4de3</originalsourceid><addsrcrecordid>eNqFkE9LwzAYh4soOKdXzwHPm_nTJulxdJsOJipT8FaSNtGMtqlJu7GbH8HP6CexZbIdPb0v_J7nfeEXBNcIjhGE-FbkuhxjiCGknIYnwQBRREcEYn562NHbeXDh_RpCxBgJB8FmprXJjKoasKi0E07lYGUL4UCiisKDWVkXdmeqd_DciqppSzC1TU-Y3IOtaT7AqnG2ixdVo9zP13cfJ7ati94RVQ6OD56E92YjGmOry-BMi8Krq785DF7ns5fkfrR8vFskk-UoI4iFIxTLiHOiIAtZrjjJJWdS05gxKmFEoowIqSTPskjSTOJIhExrEnLEIynCXJFhcLO_Wzv72SrfpGvbuqp7meIwxhGlMeYdNd5TmbPeO6XT2plSuF2KYNp3m_bdpoduOyHeC1tTqN0_dDqZzh-O7i-Ox4AR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492566928</pqid></control><display><type>article</type><title>Efficient Infrared Solar Cells Employing Quantum Dot Solids with Strong Inter‐Dot Coupling and Efficient Passivation</title><source>Wiley Online Library All Journals</source><creator>Liu, Sisi ; Zhang, Chongjian ; Li, Shuangyuan ; Xia, Yong ; Wang, Kang ; Xiong, Kao ; Tang, Haodong ; Lian, Linyuan ; Liu, Xinxing ; Li, Ming‐Yu ; Tan, Manlin ; Gao, Liang ; Niu, Guangda ; Liu, Huan ; Song, Haisheng ; Zhang, Daoli ; Gao, Jianbo ; Lan, Xinzheng ; Wang, Kai ; Sun, Xiao Wei ; Yang, Ye ; Tang, Jiang ; Zhang, Jianbing</creator><creatorcontrib>Liu, Sisi ; Zhang, Chongjian ; Li, Shuangyuan ; Xia, Yong ; Wang, Kang ; Xiong, Kao ; Tang, Haodong ; Lian, Linyuan ; Liu, Xinxing ; Li, Ming‐Yu ; Tan, Manlin ; Gao, Liang ; Niu, Guangda ; Liu, Huan ; Song, Haisheng ; Zhang, Daoli ; Gao, Jianbo ; Lan, Xinzheng ; Wang, Kai ; Sun, Xiao Wei ; Yang, Ye ; Tang, Jiang ; Zhang, Jianbing</creatorcontrib><description>Lead chalcogenide quantum dot (QD) infrared (IR) solar cells are promising devices for breaking through the theoretical efficiency limit of single‐junction solar cells by harvesting the low‐energy IR photons that cannot be utilized by common devices. However, the device performance of QD IR photovoltaic is limited by the restrictive relation between open‐circuit voltages (VOC) and short circuit current densities (JSC), caused by the contradiction between surface passivation and electronic coupling of QD solids. Here, a strategy is developed to decouple this restriction via epitaxially coating a thin PbS shell over the PbSe QDs (PbSe/PbS QDs) combined with in situ halide passivation. The strong electronic coupling from the PbSe core gives rise to significant carrier delocalization, which guarantees effective carrier transport. Benefited from the protection of PbS shell and in situ halide passivation, excellent trap‐state control of QDs is eventually achieved after the ligand exchange. By a fine control of the PbS shell thickness, outstanding IR JSC of 6.38 mA cm−2 and IR VOC of 0.347 V are simultaneously achieved under the 1100 nm‐filtered solar illumination, providing a new route to unfreeze the trade‐off between VOC and JSC limited by the photoactive layer with a given bandgap.
PbSe quantum dot (QD) infrared solar cells are promising devices for improved photovoltaic performance by harvesting the low‐energy infrared photons unabsorbed by common solar cells. Here, a strategy to protect PbSe QDs is developed via combination of epitaxially coating a thin PbS shell and in situ halide passivation, breaking the VOC–JSC trade‐off in the traditional QD solar cells.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202006864</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carrier transport ; Circuits ; Coupling ; Energy harvesting ; infrared solar cells ; inter‐dot coupling ; Lead selenides ; Materials science ; Passivity ; PbSe ; PbSe/PbS core/shell ; Photovoltaic cells ; Quantum dots ; Short circuit currents ; Solar cells</subject><ispartof>Advanced functional materials, 2021-02, Vol.31 (9), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-19b5883e0747de83db87bf69776b0535c3abeb8cc5b6cb25a47ff348185ba4de3</citedby><cites>FETCH-LOGICAL-c3174-19b5883e0747de83db87bf69776b0535c3abeb8cc5b6cb25a47ff348185ba4de3</cites><orcidid>0000-0003-0642-3939 ; 0000-0002-2840-1880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202006864$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202006864$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Liu, Sisi</creatorcontrib><creatorcontrib>Zhang, Chongjian</creatorcontrib><creatorcontrib>Li, Shuangyuan</creatorcontrib><creatorcontrib>Xia, Yong</creatorcontrib><creatorcontrib>Wang, Kang</creatorcontrib><creatorcontrib>Xiong, Kao</creatorcontrib><creatorcontrib>Tang, Haodong</creatorcontrib><creatorcontrib>Lian, Linyuan</creatorcontrib><creatorcontrib>Liu, Xinxing</creatorcontrib><creatorcontrib>Li, Ming‐Yu</creatorcontrib><creatorcontrib>Tan, Manlin</creatorcontrib><creatorcontrib>Gao, Liang</creatorcontrib><creatorcontrib>Niu, Guangda</creatorcontrib><creatorcontrib>Liu, Huan</creatorcontrib><creatorcontrib>Song, Haisheng</creatorcontrib><creatorcontrib>Zhang, Daoli</creatorcontrib><creatorcontrib>Gao, Jianbo</creatorcontrib><creatorcontrib>Lan, Xinzheng</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Sun, Xiao Wei</creatorcontrib><creatorcontrib>Yang, Ye</creatorcontrib><creatorcontrib>Tang, Jiang</creatorcontrib><creatorcontrib>Zhang, Jianbing</creatorcontrib><title>Efficient Infrared Solar Cells Employing Quantum Dot Solids with Strong Inter‐Dot Coupling and Efficient Passivation</title><title>Advanced functional materials</title><description>Lead chalcogenide quantum dot (QD) infrared (IR) solar cells are promising devices for breaking through the theoretical efficiency limit of single‐junction solar cells by harvesting the low‐energy IR photons that cannot be utilized by common devices. However, the device performance of QD IR photovoltaic is limited by the restrictive relation between open‐circuit voltages (VOC) and short circuit current densities (JSC), caused by the contradiction between surface passivation and electronic coupling of QD solids. Here, a strategy is developed to decouple this restriction via epitaxially coating a thin PbS shell over the PbSe QDs (PbSe/PbS QDs) combined with in situ halide passivation. The strong electronic coupling from the PbSe core gives rise to significant carrier delocalization, which guarantees effective carrier transport. Benefited from the protection of PbS shell and in situ halide passivation, excellent trap‐state control of QDs is eventually achieved after the ligand exchange. By a fine control of the PbS shell thickness, outstanding IR JSC of 6.38 mA cm−2 and IR VOC of 0.347 V are simultaneously achieved under the 1100 nm‐filtered solar illumination, providing a new route to unfreeze the trade‐off between VOC and JSC limited by the photoactive layer with a given bandgap.
PbSe quantum dot (QD) infrared solar cells are promising devices for improved photovoltaic performance by harvesting the low‐energy infrared photons unabsorbed by common solar cells. Here, a strategy to protect PbSe QDs is developed via combination of epitaxially coating a thin PbS shell and in situ halide passivation, breaking the VOC–JSC trade‐off in the traditional QD solar cells.</description><subject>Carrier transport</subject><subject>Circuits</subject><subject>Coupling</subject><subject>Energy harvesting</subject><subject>infrared solar cells</subject><subject>inter‐dot coupling</subject><subject>Lead selenides</subject><subject>Materials science</subject><subject>Passivity</subject><subject>PbSe</subject><subject>PbSe/PbS core/shell</subject><subject>Photovoltaic cells</subject><subject>Quantum dots</subject><subject>Short circuit currents</subject><subject>Solar cells</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LwzAYh4soOKdXzwHPm_nTJulxdJsOJipT8FaSNtGMtqlJu7GbH8HP6CexZbIdPb0v_J7nfeEXBNcIjhGE-FbkuhxjiCGknIYnwQBRREcEYn562NHbeXDh_RpCxBgJB8FmprXJjKoasKi0E07lYGUL4UCiisKDWVkXdmeqd_DciqppSzC1TU-Y3IOtaT7AqnG2ixdVo9zP13cfJ7ati94RVQ6OD56E92YjGmOry-BMi8Krq785DF7ns5fkfrR8vFskk-UoI4iFIxTLiHOiIAtZrjjJJWdS05gxKmFEoowIqSTPskjSTOJIhExrEnLEIynCXJFhcLO_Wzv72SrfpGvbuqp7meIwxhGlMeYdNd5TmbPeO6XT2plSuF2KYNp3m_bdpoduOyHeC1tTqN0_dDqZzh-O7i-Ox4AR</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Liu, Sisi</creator><creator>Zhang, Chongjian</creator><creator>Li, Shuangyuan</creator><creator>Xia, Yong</creator><creator>Wang, Kang</creator><creator>Xiong, Kao</creator><creator>Tang, Haodong</creator><creator>Lian, Linyuan</creator><creator>Liu, Xinxing</creator><creator>Li, Ming‐Yu</creator><creator>Tan, Manlin</creator><creator>Gao, Liang</creator><creator>Niu, Guangda</creator><creator>Liu, Huan</creator><creator>Song, Haisheng</creator><creator>Zhang, Daoli</creator><creator>Gao, Jianbo</creator><creator>Lan, Xinzheng</creator><creator>Wang, Kai</creator><creator>Sun, Xiao Wei</creator><creator>Yang, Ye</creator><creator>Tang, Jiang</creator><creator>Zhang, Jianbing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0642-3939</orcidid><orcidid>https://orcid.org/0000-0002-2840-1880</orcidid></search><sort><creationdate>20210201</creationdate><title>Efficient Infrared Solar Cells Employing Quantum Dot Solids with Strong Inter‐Dot Coupling and Efficient Passivation</title><author>Liu, Sisi ; Zhang, Chongjian ; Li, Shuangyuan ; Xia, Yong ; Wang, Kang ; Xiong, Kao ; Tang, Haodong ; Lian, Linyuan ; Liu, Xinxing ; Li, Ming‐Yu ; Tan, Manlin ; Gao, Liang ; Niu, Guangda ; Liu, Huan ; Song, Haisheng ; Zhang, Daoli ; Gao, Jianbo ; Lan, Xinzheng ; Wang, Kai ; Sun, Xiao Wei ; Yang, Ye ; Tang, Jiang ; Zhang, Jianbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-19b5883e0747de83db87bf69776b0535c3abeb8cc5b6cb25a47ff348185ba4de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carrier transport</topic><topic>Circuits</topic><topic>Coupling</topic><topic>Energy harvesting</topic><topic>infrared solar cells</topic><topic>inter‐dot coupling</topic><topic>Lead selenides</topic><topic>Materials science</topic><topic>Passivity</topic><topic>PbSe</topic><topic>PbSe/PbS core/shell</topic><topic>Photovoltaic cells</topic><topic>Quantum dots</topic><topic>Short circuit currents</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Sisi</creatorcontrib><creatorcontrib>Zhang, Chongjian</creatorcontrib><creatorcontrib>Li, Shuangyuan</creatorcontrib><creatorcontrib>Xia, Yong</creatorcontrib><creatorcontrib>Wang, Kang</creatorcontrib><creatorcontrib>Xiong, Kao</creatorcontrib><creatorcontrib>Tang, Haodong</creatorcontrib><creatorcontrib>Lian, Linyuan</creatorcontrib><creatorcontrib>Liu, Xinxing</creatorcontrib><creatorcontrib>Li, Ming‐Yu</creatorcontrib><creatorcontrib>Tan, Manlin</creatorcontrib><creatorcontrib>Gao, Liang</creatorcontrib><creatorcontrib>Niu, Guangda</creatorcontrib><creatorcontrib>Liu, Huan</creatorcontrib><creatorcontrib>Song, Haisheng</creatorcontrib><creatorcontrib>Zhang, Daoli</creatorcontrib><creatorcontrib>Gao, Jianbo</creatorcontrib><creatorcontrib>Lan, Xinzheng</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Sun, Xiao Wei</creatorcontrib><creatorcontrib>Yang, Ye</creatorcontrib><creatorcontrib>Tang, Jiang</creatorcontrib><creatorcontrib>Zhang, Jianbing</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Sisi</au><au>Zhang, Chongjian</au><au>Li, Shuangyuan</au><au>Xia, Yong</au><au>Wang, Kang</au><au>Xiong, Kao</au><au>Tang, Haodong</au><au>Lian, Linyuan</au><au>Liu, Xinxing</au><au>Li, Ming‐Yu</au><au>Tan, Manlin</au><au>Gao, Liang</au><au>Niu, Guangda</au><au>Liu, Huan</au><au>Song, Haisheng</au><au>Zhang, Daoli</au><au>Gao, Jianbo</au><au>Lan, Xinzheng</au><au>Wang, Kai</au><au>Sun, Xiao Wei</au><au>Yang, Ye</au><au>Tang, Jiang</au><au>Zhang, Jianbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Infrared Solar Cells Employing Quantum Dot Solids with Strong Inter‐Dot Coupling and Efficient Passivation</atitle><jtitle>Advanced functional materials</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>31</volume><issue>9</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Lead chalcogenide quantum dot (QD) infrared (IR) solar cells are promising devices for breaking through the theoretical efficiency limit of single‐junction solar cells by harvesting the low‐energy IR photons that cannot be utilized by common devices. However, the device performance of QD IR photovoltaic is limited by the restrictive relation between open‐circuit voltages (VOC) and short circuit current densities (JSC), caused by the contradiction between surface passivation and electronic coupling of QD solids. Here, a strategy is developed to decouple this restriction via epitaxially coating a thin PbS shell over the PbSe QDs (PbSe/PbS QDs) combined with in situ halide passivation. The strong electronic coupling from the PbSe core gives rise to significant carrier delocalization, which guarantees effective carrier transport. Benefited from the protection of PbS shell and in situ halide passivation, excellent trap‐state control of QDs is eventually achieved after the ligand exchange. By a fine control of the PbS shell thickness, outstanding IR JSC of 6.38 mA cm−2 and IR VOC of 0.347 V are simultaneously achieved under the 1100 nm‐filtered solar illumination, providing a new route to unfreeze the trade‐off between VOC and JSC limited by the photoactive layer with a given bandgap.
PbSe quantum dot (QD) infrared solar cells are promising devices for improved photovoltaic performance by harvesting the low‐energy infrared photons unabsorbed by common solar cells. Here, a strategy to protect PbSe QDs is developed via combination of epitaxially coating a thin PbS shell and in situ halide passivation, breaking the VOC–JSC trade‐off in the traditional QD solar cells.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202006864</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0642-3939</orcidid><orcidid>https://orcid.org/0000-0002-2840-1880</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-02, Vol.31 (9), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2492566928 |
source | Wiley Online Library All Journals |
subjects | Carrier transport Circuits Coupling Energy harvesting infrared solar cells inter‐dot coupling Lead selenides Materials science Passivity PbSe PbSe/PbS core/shell Photovoltaic cells Quantum dots Short circuit currents Solar cells |
title | Efficient Infrared Solar Cells Employing Quantum Dot Solids with Strong Inter‐Dot Coupling and Efficient Passivation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Infrared%20Solar%20Cells%20Employing%20Quantum%20Dot%20Solids%20with%20Strong%20Inter%E2%80%90Dot%20Coupling%20and%20Efficient%20Passivation&rft.jtitle=Advanced%20functional%20materials&rft.au=Liu,%20Sisi&rft.date=2021-02-01&rft.volume=31&rft.issue=9&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202006864&rft_dat=%3Cproquest_cross%3E2492566928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492566928&rft_id=info:pmid/&rfr_iscdi=true |