Simple Designed Micro–Nano Si–Graphite Hybrids for Lithium Storage

Up to now, the silicon‐graphite anode materials with commercial prospect for lithium batteries (LIBs) still face three dilemmas of the huge volume effect, the poor interface compatibility, and the high resistance. To address the above challenges, micro–nano structured composites of graphite coating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-02, Vol.17 (8), p.e2006373-n/a
Hauptverfasser: Li, Jiaxin, Huang, Yongcong, Huang, Weijian, Tao, Jianming, Lv, Fucong, Ye, Ruilai, Lin, Yingbin, Li, Yang yang, Huang, Zhigao, Lu, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page e2006373
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 17
creator Li, Jiaxin
Huang, Yongcong
Huang, Weijian
Tao, Jianming
Lv, Fucong
Ye, Ruilai
Lin, Yingbin
Li, Yang yang
Huang, Zhigao
Lu, Jian
description Up to now, the silicon‐graphite anode materials with commercial prospect for lithium batteries (LIBs) still face three dilemmas of the huge volume effect, the poor interface compatibility, and the high resistance. To address the above challenges, micro–nano structured composites of graphite coating by ZnO‐incorporated and carbon‐coated silicon (marked as Gr@ZnO‐Si‐C) are reasonably synthesized via an efficient and convenient method of liquid phase self‐assembly synthesis combined with annealing treatment. The designed composites of Gr@ZnO‐Si‐C deliver excellent lithium battery performance with good rate performance and stable long‐cycling life of 1000 cycles with reversible capacities of 1150 and 780 mAh g−1 tested at 600 and 1200 mA g−1, respectively. The obtained results reveal that the incorporated ZnO effectively improve the interface compatibility between electrolyte and active materials, and boost the formation of compact and stable surface solid electrolyte interphase layer for electrodes. Furthermore, the pyrolytic carbon layer formed from polyacrylamide can directly improve electrical conductivity, decrease polarization, and thus promote their electrochemical performance. Finally, based on the scalable preparation of Gr@ZnO‐Si‐C composites, the pouch full cells of Gr@ZnO‐Si‐C||NCM523 are assembled and used to evaluate the commercial prospects of Si–graphite composites, offering highly useful information for researchers working in the battery industry. Micro–nano structured hybrids of graphite coating by ZnO‐incorporated and carbon‐coated silicon are synthesized by simple method of liquid phase self‐assembly synthesis combined with annealing treatment. The designed composites can overcome their obstacles of huge volume effect, poor interface compatibility, and high resistance, and thus deliver excellent lithium battery performance with good rate performance and stable long‐cycling life.
doi_str_mv 10.1002/smll.202006373
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2492539370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492539370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4123-ca7467617d8200da302c229b6183d075b653082dff0fcf52d8b4ee85f69800ad3</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EoqWwMqJIzClnO3GSERXaIqUwBGbLie3WVdIEOxHqxjvwhjwJqVrKyHQ3fPff3YfQNYYxBiB3rirLMQECwGhET9AQM0x9FpPk9NhjGKAL59YAFJMgOkcDSkNCMKVDNM1M1ZTKe1DOLDdKegtT2Pr78-tZbGovM303s6JZmVZ5821ujXSerq2XmnZlusrL2tqKpbpEZ1qUTl0d6gi9TR9fJ3M_fZk9Te5TvwgwoX4hooBFDEcy7i-WggIpCElyhmMqIQpzFlKIidQadKFDIuM8UCoONUtiACHpCN3ucxtbv3fKtXxdd3bTr-QkSEhIExpBT433VP-Kc1Zp3lhTCbvlGPhOG99p40dt_cDNIbbLKyWP-K-nHkj2wIcp1fafOJ4t0vQv_AdOkHnL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492539370</pqid></control><display><type>article</type><title>Simple Designed Micro–Nano Si–Graphite Hybrids for Lithium Storage</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Jiaxin ; Huang, Yongcong ; Huang, Weijian ; Tao, Jianming ; Lv, Fucong ; Ye, Ruilai ; Lin, Yingbin ; Li, Yang yang ; Huang, Zhigao ; Lu, Jian</creator><creatorcontrib>Li, Jiaxin ; Huang, Yongcong ; Huang, Weijian ; Tao, Jianming ; Lv, Fucong ; Ye, Ruilai ; Lin, Yingbin ; Li, Yang yang ; Huang, Zhigao ; Lu, Jian</creatorcontrib><description>Up to now, the silicon‐graphite anode materials with commercial prospect for lithium batteries (LIBs) still face three dilemmas of the huge volume effect, the poor interface compatibility, and the high resistance. To address the above challenges, micro–nano structured composites of graphite coating by ZnO‐incorporated and carbon‐coated silicon (marked as Gr@ZnO‐Si‐C) are reasonably synthesized via an efficient and convenient method of liquid phase self‐assembly synthesis combined with annealing treatment. The designed composites of Gr@ZnO‐Si‐C deliver excellent lithium battery performance with good rate performance and stable long‐cycling life of 1000 cycles with reversible capacities of 1150 and 780 mAh g−1 tested at 600 and 1200 mA g−1, respectively. The obtained results reveal that the incorporated ZnO effectively improve the interface compatibility between electrolyte and active materials, and boost the formation of compact and stable surface solid electrolyte interphase layer for electrodes. Furthermore, the pyrolytic carbon layer formed from polyacrylamide can directly improve electrical conductivity, decrease polarization, and thus promote their electrochemical performance. Finally, based on the scalable preparation of Gr@ZnO‐Si‐C composites, the pouch full cells of Gr@ZnO‐Si‐C||NCM523 are assembled and used to evaluate the commercial prospects of Si–graphite composites, offering highly useful information for researchers working in the battery industry. Micro–nano structured hybrids of graphite coating by ZnO‐incorporated and carbon‐coated silicon are synthesized by simple method of liquid phase self‐assembly synthesis combined with annealing treatment. The designed composites can overcome their obstacles of huge volume effect, poor interface compatibility, and high resistance, and thus deliver excellent lithium battery performance with good rate performance and stable long‐cycling life.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202006373</identifier><identifier>PMID: 33522133</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Compatibility ; Composite materials ; Electrical resistivity ; Electrochemical analysis ; electrochemical mechanism ; Electrode materials ; Electrolytes ; Electrolytic cells ; Graphite ; High resistance ; interface compatibility ; Liquid phases ; Lithium ; Lithium batteries ; micro–nano structured Si‐C composites ; Nanotechnology ; Polyacrylamide ; pouch full cell ; Silicon ; Solid electrolytes ; Zinc oxide</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-02, Vol.17 (8), p.e2006373-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4123-ca7467617d8200da302c229b6183d075b653082dff0fcf52d8b4ee85f69800ad3</citedby><cites>FETCH-LOGICAL-c4123-ca7467617d8200da302c229b6183d075b653082dff0fcf52d8b4ee85f69800ad3</cites><orcidid>0000-0001-5360-0219 ; 0000-0002-8157-3550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202006373$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202006373$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33522133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jiaxin</creatorcontrib><creatorcontrib>Huang, Yongcong</creatorcontrib><creatorcontrib>Huang, Weijian</creatorcontrib><creatorcontrib>Tao, Jianming</creatorcontrib><creatorcontrib>Lv, Fucong</creatorcontrib><creatorcontrib>Ye, Ruilai</creatorcontrib><creatorcontrib>Lin, Yingbin</creatorcontrib><creatorcontrib>Li, Yang yang</creatorcontrib><creatorcontrib>Huang, Zhigao</creatorcontrib><creatorcontrib>Lu, Jian</creatorcontrib><title>Simple Designed Micro–Nano Si–Graphite Hybrids for Lithium Storage</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Up to now, the silicon‐graphite anode materials with commercial prospect for lithium batteries (LIBs) still face three dilemmas of the huge volume effect, the poor interface compatibility, and the high resistance. To address the above challenges, micro–nano structured composites of graphite coating by ZnO‐incorporated and carbon‐coated silicon (marked as Gr@ZnO‐Si‐C) are reasonably synthesized via an efficient and convenient method of liquid phase self‐assembly synthesis combined with annealing treatment. The designed composites of Gr@ZnO‐Si‐C deliver excellent lithium battery performance with good rate performance and stable long‐cycling life of 1000 cycles with reversible capacities of 1150 and 780 mAh g−1 tested at 600 and 1200 mA g−1, respectively. The obtained results reveal that the incorporated ZnO effectively improve the interface compatibility between electrolyte and active materials, and boost the formation of compact and stable surface solid electrolyte interphase layer for electrodes. Furthermore, the pyrolytic carbon layer formed from polyacrylamide can directly improve electrical conductivity, decrease polarization, and thus promote their electrochemical performance. Finally, based on the scalable preparation of Gr@ZnO‐Si‐C composites, the pouch full cells of Gr@ZnO‐Si‐C||NCM523 are assembled and used to evaluate the commercial prospects of Si–graphite composites, offering highly useful information for researchers working in the battery industry. Micro–nano structured hybrids of graphite coating by ZnO‐incorporated and carbon‐coated silicon are synthesized by simple method of liquid phase self‐assembly synthesis combined with annealing treatment. The designed composites can overcome their obstacles of huge volume effect, poor interface compatibility, and high resistance, and thus deliver excellent lithium battery performance with good rate performance and stable long‐cycling life.</description><subject>Anodes</subject><subject>Compatibility</subject><subject>Composite materials</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>electrochemical mechanism</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Graphite</subject><subject>High resistance</subject><subject>interface compatibility</subject><subject>Liquid phases</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>micro–nano structured Si‐C composites</subject><subject>Nanotechnology</subject><subject>Polyacrylamide</subject><subject>pouch full cell</subject><subject>Silicon</subject><subject>Solid electrolytes</subject><subject>Zinc oxide</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EoqWwMqJIzClnO3GSERXaIqUwBGbLie3WVdIEOxHqxjvwhjwJqVrKyHQ3fPff3YfQNYYxBiB3rirLMQECwGhET9AQM0x9FpPk9NhjGKAL59YAFJMgOkcDSkNCMKVDNM1M1ZTKe1DOLDdKegtT2Pr78-tZbGovM303s6JZmVZ5821ujXSerq2XmnZlusrL2tqKpbpEZ1qUTl0d6gi9TR9fJ3M_fZk9Te5TvwgwoX4hooBFDEcy7i-WggIpCElyhmMqIQpzFlKIidQadKFDIuM8UCoONUtiACHpCN3ucxtbv3fKtXxdd3bTr-QkSEhIExpBT433VP-Kc1Zp3lhTCbvlGPhOG99p40dt_cDNIbbLKyWP-K-nHkj2wIcp1fafOJ4t0vQv_AdOkHnL</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Li, Jiaxin</creator><creator>Huang, Yongcong</creator><creator>Huang, Weijian</creator><creator>Tao, Jianming</creator><creator>Lv, Fucong</creator><creator>Ye, Ruilai</creator><creator>Lin, Yingbin</creator><creator>Li, Yang yang</creator><creator>Huang, Zhigao</creator><creator>Lu, Jian</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5360-0219</orcidid><orcidid>https://orcid.org/0000-0002-8157-3550</orcidid></search><sort><creationdate>20210201</creationdate><title>Simple Designed Micro–Nano Si–Graphite Hybrids for Lithium Storage</title><author>Li, Jiaxin ; Huang, Yongcong ; Huang, Weijian ; Tao, Jianming ; Lv, Fucong ; Ye, Ruilai ; Lin, Yingbin ; Li, Yang yang ; Huang, Zhigao ; Lu, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4123-ca7467617d8200da302c229b6183d075b653082dff0fcf52d8b4ee85f69800ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Compatibility</topic><topic>Composite materials</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>electrochemical mechanism</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Graphite</topic><topic>High resistance</topic><topic>interface compatibility</topic><topic>Liquid phases</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>micro–nano structured Si‐C composites</topic><topic>Nanotechnology</topic><topic>Polyacrylamide</topic><topic>pouch full cell</topic><topic>Silicon</topic><topic>Solid electrolytes</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jiaxin</creatorcontrib><creatorcontrib>Huang, Yongcong</creatorcontrib><creatorcontrib>Huang, Weijian</creatorcontrib><creatorcontrib>Tao, Jianming</creatorcontrib><creatorcontrib>Lv, Fucong</creatorcontrib><creatorcontrib>Ye, Ruilai</creatorcontrib><creatorcontrib>Lin, Yingbin</creatorcontrib><creatorcontrib>Li, Yang yang</creatorcontrib><creatorcontrib>Huang, Zhigao</creatorcontrib><creatorcontrib>Lu, Jian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jiaxin</au><au>Huang, Yongcong</au><au>Huang, Weijian</au><au>Tao, Jianming</au><au>Lv, Fucong</au><au>Ye, Ruilai</au><au>Lin, Yingbin</au><au>Li, Yang yang</au><au>Huang, Zhigao</au><au>Lu, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple Designed Micro–Nano Si–Graphite Hybrids for Lithium Storage</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>17</volume><issue>8</issue><spage>e2006373</spage><epage>n/a</epage><pages>e2006373-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Up to now, the silicon‐graphite anode materials with commercial prospect for lithium batteries (LIBs) still face three dilemmas of the huge volume effect, the poor interface compatibility, and the high resistance. To address the above challenges, micro–nano structured composites of graphite coating by ZnO‐incorporated and carbon‐coated silicon (marked as Gr@ZnO‐Si‐C) are reasonably synthesized via an efficient and convenient method of liquid phase self‐assembly synthesis combined with annealing treatment. The designed composites of Gr@ZnO‐Si‐C deliver excellent lithium battery performance with good rate performance and stable long‐cycling life of 1000 cycles with reversible capacities of 1150 and 780 mAh g−1 tested at 600 and 1200 mA g−1, respectively. The obtained results reveal that the incorporated ZnO effectively improve the interface compatibility between electrolyte and active materials, and boost the formation of compact and stable surface solid electrolyte interphase layer for electrodes. Furthermore, the pyrolytic carbon layer formed from polyacrylamide can directly improve electrical conductivity, decrease polarization, and thus promote their electrochemical performance. Finally, based on the scalable preparation of Gr@ZnO‐Si‐C composites, the pouch full cells of Gr@ZnO‐Si‐C||NCM523 are assembled and used to evaluate the commercial prospects of Si–graphite composites, offering highly useful information for researchers working in the battery industry. Micro–nano structured hybrids of graphite coating by ZnO‐incorporated and carbon‐coated silicon are synthesized by simple method of liquid phase self‐assembly synthesis combined with annealing treatment. The designed composites can overcome their obstacles of huge volume effect, poor interface compatibility, and high resistance, and thus deliver excellent lithium battery performance with good rate performance and stable long‐cycling life.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33522133</pmid><doi>10.1002/smll.202006373</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5360-0219</orcidid><orcidid>https://orcid.org/0000-0002-8157-3550</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2021-02, Vol.17 (8), p.e2006373-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_journals_2492539370
source Wiley Online Library Journals Frontfile Complete
subjects Anodes
Compatibility
Composite materials
Electrical resistivity
Electrochemical analysis
electrochemical mechanism
Electrode materials
Electrolytes
Electrolytic cells
Graphite
High resistance
interface compatibility
Liquid phases
Lithium
Lithium batteries
micro–nano structured Si‐C composites
Nanotechnology
Polyacrylamide
pouch full cell
Silicon
Solid electrolytes
Zinc oxide
title Simple Designed Micro–Nano Si–Graphite Hybrids for Lithium Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20Designed%20Micro%E2%80%93Nano%20Si%E2%80%93Graphite%20Hybrids%20for%20Lithium%20Storage&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Li,%20Jiaxin&rft.date=2021-02-01&rft.volume=17&rft.issue=8&rft.spage=e2006373&rft.epage=n/a&rft.pages=e2006373-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202006373&rft_dat=%3Cproquest_cross%3E2492539370%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492539370&rft_id=info:pmid/33522133&rfr_iscdi=true