Surface waves in piezothermoelastic transversely isotropic layer lying over piezothermoelastic transversely isotropic half-space
In this article, the propagation of Rayleigh surface waves in a piezothermoelastic transversely isotropic layer lying over a piezothermoelastic transversely isotropic half-space is investigated in the context of the Green–Naghdi model type III of hyperbolic thermoelasticity. The secular equation of...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 2021-02, Vol.232 (2), p.373-387 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 387 |
---|---|
container_issue | 2 |
container_start_page | 373 |
container_title | Acta mechanica |
container_volume | 232 |
creator | Biswas, Siddhartha |
description | In this article, the propagation of Rayleigh surface waves in a piezothermoelastic transversely isotropic layer lying over a piezothermoelastic transversely isotropic half-space is investigated in the context of the Green–Naghdi model type III of hyperbolic thermoelasticity. The secular equation of Rayleigh surface waves is derived, and different cases are discussed. Phase velocity, attenuation coefficient and specific loss of surface waves are computed and presented graphically with respect to frequency, and a comparison of different wave characteristics for classical and generalized thermoelastic models is presented in the figures. |
doi_str_mv | 10.1007/s00707-020-02848-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2492472372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A652894288</galeid><sourcerecordid>A652894288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-3af02fa730a5865c88d3b7684063e7e21165da4b951f22936a80559674c903ad3</originalsourceid><addsrcrecordid>eNqVkUtLAzEQx4MoWKtfwNOC59U8Nq9jKb6g4EE9h3Q7aVO2mzXZVurJj27qCt4EmcyEzMwvM_BH6JLga4KxvEk5YFliirOrSpXqCI2IILoUmsljNMIYk5JriU_RWUrr_KKyIiP0-byNztZQvNsdpMK3RefhI_QriJsAjU29r4s-2jbtICZo9oVPoY-hy-nG7iEWzd63yyLk8j_QlW1cmbo8-BydONskuPi5x-j17vZl-lDOnu4fp5NZWTOu-pJZh6mzkmHLleC1Ugs2l0JVWDCQQAkRfGGruebEUaqZsApzroWsao2ZXbAxuhr-7WJ420LqzTpsY5tHGlppWknK8hmj66FraRswvnV5YVtnW8DG16EF53N-IjhVuqJKZYAOQB1DShGc6aLf2Lg3BJuDNGaQxmRpzLc05gCxAUq5uV1C_N3lD-oLPkKUTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492472372</pqid></control><display><type>article</type><title>Surface waves in piezothermoelastic transversely isotropic layer lying over piezothermoelastic transversely isotropic half-space</title><source>SpringerLink Journals - AutoHoldings</source><creator>Biswas, Siddhartha</creator><creatorcontrib>Biswas, Siddhartha</creatorcontrib><description>In this article, the propagation of Rayleigh surface waves in a piezothermoelastic transversely isotropic layer lying over a piezothermoelastic transversely isotropic half-space is investigated in the context of the Green–Naghdi model type III of hyperbolic thermoelasticity. The secular equation of Rayleigh surface waves is derived, and different cases are discussed. Phase velocity, attenuation coefficient and specific loss of surface waves are computed and presented graphically with respect to frequency, and a comparison of different wave characteristics for classical and generalized thermoelastic models is presented in the figures.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-020-02848-8</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Attenuation coefficients ; Classical and Continuum Physics ; Control ; Dynamical Systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Half spaces ; Heat and Mass Transfer ; Original Paper ; Phase velocity ; Solid Mechanics ; Surface waves ; Theoretical and Applied Mechanics ; Thermoelasticity ; Vibration ; Wave attenuation ; Wave propagation</subject><ispartof>Acta mechanica, 2021-02, Vol.232 (2), p.373-387</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-3af02fa730a5865c88d3b7684063e7e21165da4b951f22936a80559674c903ad3</citedby><cites>FETCH-LOGICAL-c358t-3af02fa730a5865c88d3b7684063e7e21165da4b951f22936a80559674c903ad3</cites><orcidid>0000-0002-3599-3431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-020-02848-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-020-02848-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Biswas, Siddhartha</creatorcontrib><title>Surface waves in piezothermoelastic transversely isotropic layer lying over piezothermoelastic transversely isotropic half-space</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>In this article, the propagation of Rayleigh surface waves in a piezothermoelastic transversely isotropic layer lying over a piezothermoelastic transversely isotropic half-space is investigated in the context of the Green–Naghdi model type III of hyperbolic thermoelasticity. The secular equation of Rayleigh surface waves is derived, and different cases are discussed. Phase velocity, attenuation coefficient and specific loss of surface waves are computed and presented graphically with respect to frequency, and a comparison of different wave characteristics for classical and generalized thermoelastic models is presented in the figures.</description><subject>Attenuation coefficients</subject><subject>Classical and Continuum Physics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Half spaces</subject><subject>Heat and Mass Transfer</subject><subject>Original Paper</subject><subject>Phase velocity</subject><subject>Solid Mechanics</subject><subject>Surface waves</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermoelasticity</subject><subject>Vibration</subject><subject>Wave attenuation</subject><subject>Wave propagation</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqVkUtLAzEQx4MoWKtfwNOC59U8Nq9jKb6g4EE9h3Q7aVO2mzXZVurJj27qCt4EmcyEzMwvM_BH6JLga4KxvEk5YFliirOrSpXqCI2IILoUmsljNMIYk5JriU_RWUrr_KKyIiP0-byNztZQvNsdpMK3RefhI_QriJsAjU29r4s-2jbtICZo9oVPoY-hy-nG7iEWzd63yyLk8j_QlW1cmbo8-BydONskuPi5x-j17vZl-lDOnu4fp5NZWTOu-pJZh6mzkmHLleC1Ugs2l0JVWDCQQAkRfGGruebEUaqZsApzroWsao2ZXbAxuhr-7WJ420LqzTpsY5tHGlppWknK8hmj66FraRswvnV5YVtnW8DG16EF53N-IjhVuqJKZYAOQB1DShGc6aLf2Lg3BJuDNGaQxmRpzLc05gCxAUq5uV1C_N3lD-oLPkKUTg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Biswas, Siddhartha</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-3599-3431</orcidid></search><sort><creationdate>20210201</creationdate><title>Surface waves in piezothermoelastic transversely isotropic layer lying over piezothermoelastic transversely isotropic half-space</title><author>Biswas, Siddhartha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-3af02fa730a5865c88d3b7684063e7e21165da4b951f22936a80559674c903ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Attenuation coefficients</topic><topic>Classical and Continuum Physics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Half spaces</topic><topic>Heat and Mass Transfer</topic><topic>Original Paper</topic><topic>Phase velocity</topic><topic>Solid Mechanics</topic><topic>Surface waves</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermoelasticity</topic><topic>Vibration</topic><topic>Wave attenuation</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Siddhartha</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, Siddhartha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface waves in piezothermoelastic transversely isotropic layer lying over piezothermoelastic transversely isotropic half-space</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>232</volume><issue>2</issue><spage>373</spage><epage>387</epage><pages>373-387</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>In this article, the propagation of Rayleigh surface waves in a piezothermoelastic transversely isotropic layer lying over a piezothermoelastic transversely isotropic half-space is investigated in the context of the Green–Naghdi model type III of hyperbolic thermoelasticity. The secular equation of Rayleigh surface waves is derived, and different cases are discussed. Phase velocity, attenuation coefficient and specific loss of surface waves are computed and presented graphically with respect to frequency, and a comparison of different wave characteristics for classical and generalized thermoelastic models is presented in the figures.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-020-02848-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3599-3431</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2021-02, Vol.232 (2), p.373-387 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_journals_2492472372 |
source | SpringerLink Journals - AutoHoldings |
subjects | Attenuation coefficients Classical and Continuum Physics Control Dynamical Systems Engineering Engineering Fluid Dynamics Engineering Thermodynamics Half spaces Heat and Mass Transfer Original Paper Phase velocity Solid Mechanics Surface waves Theoretical and Applied Mechanics Thermoelasticity Vibration Wave attenuation Wave propagation |
title | Surface waves in piezothermoelastic transversely isotropic layer lying over piezothermoelastic transversely isotropic half-space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20waves%20in%20piezothermoelastic%20transversely%20isotropic%20layer%20lying%20over%20piezothermoelastic%20transversely%20isotropic%20half-space&rft.jtitle=Acta%20mechanica&rft.au=Biswas,%20Siddhartha&rft.date=2021-02-01&rft.volume=232&rft.issue=2&rft.spage=373&rft.epage=387&rft.pages=373-387&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-020-02848-8&rft_dat=%3Cgale_proqu%3EA652894288%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492472372&rft_id=info:pmid/&rft_galeid=A652894288&rfr_iscdi=true |