On the group of spheromorphisms of a homogeneous non-locally finite tree
We consider a tree all whose vertices have countable valency. Its boundary is the Baire space and the set of irrational numbers is identified with by continued fraction expansions. Removing edges from , we get a forest consisting of copies of . A spheromorphism (or hierarchomorphism) of is an isomor...
Gespeichert in:
Veröffentlicht in: | Izvestiya. Mathematics 2020-12, Vol.84 (6), p.1161-1191 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1191 |
---|---|
container_issue | 6 |
container_start_page | 1161 |
container_title | Izvestiya. Mathematics |
container_volume | 84 |
creator | Neretin, Yu. A. |
description | We consider a tree all whose vertices have countable valency. Its boundary is the Baire space and the set of irrational numbers is identified with by continued fraction expansions. Removing edges from , we get a forest consisting of copies of . A spheromorphism (or hierarchomorphism) of is an isomorphism of two such subforests regarded as a transformation of or . We denote the group of all spheromorphisms by . We show that the correspondence sends the Thompson group realized by piecewise -transformations to a subgroup of . We construct some unitary representations of , show that the group of automorphisms is spherical in and describe the train (enveloping category) of . |
doi_str_mv | 10.1070/IM8970 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2492316721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492316721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-76df0bd8fe2efe0372ea6d2f875656e5c5e98dfd2016a74b5b3e36fcb09184843</originalsourceid><addsrcrecordid>eNpt0MtKxDAUBuAgCo6jPkNQdFfNrUm6lMHLwMhs1IWb0MvJtEOniUm7mLe3QwUXujqHw8d_4EfokpI7ShS5X77qTJEjNKNC6kRoSo7HnUiRpJKzU3QW45YQIgTlM_Sy7nBfA94EN3jsLI6-huB2Lvi6ibt4OOW4Hg8b6MANEXeuS1pX5m27x7bpmh5wHwDO0YnN2wgXP3OO3p8e3xYvyWr9vFw8rJKSKdonSlaWFJW2wMAC4YpBLitmtUplKiEtU8h0ZStGqMyVKNKCA5e2LEhGtdCCz9H1lOuD-xog9mbrhtCNLw0TGeNUKkZHdTupMrgYA1jjQ7PLw95QYg4tmamlEV5NsHH-N-kPuvkHLT8_jBZGGkolNb6y_BuC5nB7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492316721</pqid></control><display><type>article</type><title>On the group of spheromorphisms of a homogeneous non-locally finite tree</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Neretin, Yu. A.</creator><creatorcontrib>Neretin, Yu. A.</creatorcontrib><description>We consider a tree all whose vertices have countable valency. Its boundary is the Baire space and the set of irrational numbers is identified with by continued fraction expansions. Removing edges from , we get a forest consisting of copies of . A spheromorphism (or hierarchomorphism) of is an isomorphism of two such subforests regarded as a transformation of or . We denote the group of all spheromorphisms by . We show that the correspondence sends the Thompson group realized by piecewise -transformations to a subgroup of . We construct some unitary representations of , show that the group of automorphisms is spherical in and describe the train (enveloping category) of .</description><identifier>ISSN: 1064-5632</identifier><identifier>EISSN: 1468-4810</identifier><identifier>DOI: 10.1070/IM8970</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>Apexes ; Automorphisms ; Baire space ; Bruhat-Tits tree ; continued fraction ; Irrationality ; Isomorphism ; representation of categories ; Subgroups ; Thompson group</subject><ispartof>Izvestiya. Mathematics, 2020-12, Vol.84 (6), p.1161-1191</ispartof><rights>2020 RAS(DoM) and LMS</rights><rights>Copyright IOP Publishing Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c271t-76df0bd8fe2efe0372ea6d2f875656e5c5e98dfd2016a74b5b3e36fcb09184843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/IM8970/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Neretin, Yu. A.</creatorcontrib><title>On the group of spheromorphisms of a homogeneous non-locally finite tree</title><title>Izvestiya. Mathematics</title><addtitle>IZV</addtitle><addtitle>Izv. Math</addtitle><description>We consider a tree all whose vertices have countable valency. Its boundary is the Baire space and the set of irrational numbers is identified with by continued fraction expansions. Removing edges from , we get a forest consisting of copies of . A spheromorphism (or hierarchomorphism) of is an isomorphism of two such subforests regarded as a transformation of or . We denote the group of all spheromorphisms by . We show that the correspondence sends the Thompson group realized by piecewise -transformations to a subgroup of . We construct some unitary representations of , show that the group of automorphisms is spherical in and describe the train (enveloping category) of .</description><subject>Apexes</subject><subject>Automorphisms</subject><subject>Baire space</subject><subject>Bruhat-Tits tree</subject><subject>continued fraction</subject><subject>Irrationality</subject><subject>Isomorphism</subject><subject>representation of categories</subject><subject>Subgroups</subject><subject>Thompson group</subject><issn>1064-5632</issn><issn>1468-4810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpt0MtKxDAUBuAgCo6jPkNQdFfNrUm6lMHLwMhs1IWb0MvJtEOniUm7mLe3QwUXujqHw8d_4EfokpI7ShS5X77qTJEjNKNC6kRoSo7HnUiRpJKzU3QW45YQIgTlM_Sy7nBfA94EN3jsLI6-huB2Lvi6ibt4OOW4Hg8b6MANEXeuS1pX5m27x7bpmh5wHwDO0YnN2wgXP3OO3p8e3xYvyWr9vFw8rJKSKdonSlaWFJW2wMAC4YpBLitmtUplKiEtU8h0ZStGqMyVKNKCA5e2LEhGtdCCz9H1lOuD-xog9mbrhtCNLw0TGeNUKkZHdTupMrgYA1jjQ7PLw95QYg4tmamlEV5NsHH-N-kPuvkHLT8_jBZGGkolNb6y_BuC5nB7</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Neretin, Yu. A.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202012</creationdate><title>On the group of spheromorphisms of a homogeneous non-locally finite tree</title><author>Neretin, Yu. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-76df0bd8fe2efe0372ea6d2f875656e5c5e98dfd2016a74b5b3e36fcb09184843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apexes</topic><topic>Automorphisms</topic><topic>Baire space</topic><topic>Bruhat-Tits tree</topic><topic>continued fraction</topic><topic>Irrationality</topic><topic>Isomorphism</topic><topic>representation of categories</topic><topic>Subgroups</topic><topic>Thompson group</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neretin, Yu. A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Izvestiya. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neretin, Yu. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the group of spheromorphisms of a homogeneous non-locally finite tree</atitle><jtitle>Izvestiya. Mathematics</jtitle><stitle>IZV</stitle><addtitle>Izv. Math</addtitle><date>2020-12</date><risdate>2020</risdate><volume>84</volume><issue>6</issue><spage>1161</spage><epage>1191</epage><pages>1161-1191</pages><issn>1064-5632</issn><eissn>1468-4810</eissn><abstract>We consider a tree all whose vertices have countable valency. Its boundary is the Baire space and the set of irrational numbers is identified with by continued fraction expansions. Removing edges from , we get a forest consisting of copies of . A spheromorphism (or hierarchomorphism) of is an isomorphism of two such subforests regarded as a transformation of or . We denote the group of all spheromorphisms by . We show that the correspondence sends the Thompson group realized by piecewise -transformations to a subgroup of . We construct some unitary representations of , show that the group of automorphisms is spherical in and describe the train (enveloping category) of .</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/IM8970</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5632 |
ispartof | Izvestiya. Mathematics, 2020-12, Vol.84 (6), p.1161-1191 |
issn | 1064-5632 1468-4810 |
language | eng |
recordid | cdi_proquest_journals_2492316721 |
source | IOP Publishing Journals; Alma/SFX Local Collection |
subjects | Apexes Automorphisms Baire space Bruhat-Tits tree continued fraction Irrationality Isomorphism representation of categories Subgroups Thompson group |
title | On the group of spheromorphisms of a homogeneous non-locally finite tree |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20group%20of%20spheromorphisms%20of%20a%20homogeneous%20non-locally%20finite%20tree&rft.jtitle=Izvestiya.%20Mathematics&rft.au=Neretin,%20Yu.%20A.&rft.date=2020-12&rft.volume=84&rft.issue=6&rft.spage=1161&rft.epage=1191&rft.pages=1161-1191&rft.issn=1064-5632&rft.eissn=1468-4810&rft_id=info:doi/10.1070/IM8970&rft_dat=%3Cproquest_iop_j%3E2492316721%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492316721&rft_id=info:pmid/&rfr_iscdi=true |