Efficiency of evolutionary search for analog filter synthesis

Design automation presents a trade off between: using expert knowledge to restrict the possible solutions examined; or spending time searching through many, possibly ineffective, solutions. Incorrect assumptions or misapplication of constraints can miss otherwise superior results. Automated search o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2021-04, Vol.168, p.114267, Article 114267
1. Verfasser: Pillans, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 114267
container_title Expert systems with applications
container_volume 168
creator Pillans, John
description Design automation presents a trade off between: using expert knowledge to restrict the possible solutions examined; or spending time searching through many, possibly ineffective, solutions. Incorrect assumptions or misapplication of constraints can miss otherwise superior results. Automated search of possible solutions has been shown effective, limited by the available computational resources. This paper presents an evolutionary search method for finding optimized circuit topologies and component values. An example analog filter problem is exhaustively enumerated, to test the efficiency of different stochastic search methods in finding globally optimal solutions. Evolutionary methods are shown to be efficient for this problem. Impacts of varying parameters and techniques of evolutionary search are compared for a more complex asymmetric bandpass filter problem. Genetic Algorithm and Evolutionary Strategy methods are found to have similar performance. Hybrid evolutionary methods using Differential Evolution for component value optimization are found to be more efficient with limited: component count; or computational resources. The hybrid method used is shown to scale to more complex problems without changing parameters. Proposed comparison metrics, normalized for experimental variables, show the efficiency of this work improves upon published benchmarks. This is achieved without restricting the synthesized topologies to known structures, producing novel results more effective than prior works. •Circuit topology presents a challenging optimization problem.•Expert knowledge improves efficiency but can limit effectiveness of search methods.•Existing search methods have lacked comparisons of efficiency.•State of the art is advanced by critical selection of genetic algorithm parameters.
doi_str_mv 10.1016/j.eswa.2020.114267
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2492316669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417420309787</els_id><sourcerecordid>2492316669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-fa6b96b3da4d860b80ea0c60ee69189e2dbe1180a17ad22109098bcff441e7273</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz11n0po0oAdZ_IIFL3oOaTpxU2qzJt2V_fd2rWdPA8P7DO88jF0iLBBQXLcLSt9mwYGPCyy5kEdshpUsciFVccxmoG5kXqIsT9lZSi0ASgA5Y3cPznnrqbf7LLiMdqHbDj70Ju6zRCbadeZCzExvuvCROd8NFLO074c1JZ_O2YkzXaKLvzln748Pb8vnfPX69LK8X-W24NWQOyNqJeqiMWVTCagrIANWAJFQWCniTU2IFRiUpuEcQYGqautcWSJJLos5u5rubmL42lIadBu2ceyUNC8VL1AIocYUn1I2hpQiOb2J_nP8RCPogybd6oMmfdCkJ00jdDtBNPbfeYo6_eqgxkeyg26C_w__AYzMcIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492316669</pqid></control><display><type>article</type><title>Efficiency of evolutionary search for analog filter synthesis</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Pillans, John</creator><creatorcontrib>Pillans, John</creatorcontrib><description>Design automation presents a trade off between: using expert knowledge to restrict the possible solutions examined; or spending time searching through many, possibly ineffective, solutions. Incorrect assumptions or misapplication of constraints can miss otherwise superior results. Automated search of possible solutions has been shown effective, limited by the available computational resources. This paper presents an evolutionary search method for finding optimized circuit topologies and component values. An example analog filter problem is exhaustively enumerated, to test the efficiency of different stochastic search methods in finding globally optimal solutions. Evolutionary methods are shown to be efficient for this problem. Impacts of varying parameters and techniques of evolutionary search are compared for a more complex asymmetric bandpass filter problem. Genetic Algorithm and Evolutionary Strategy methods are found to have similar performance. Hybrid evolutionary methods using Differential Evolution for component value optimization are found to be more efficient with limited: component count; or computational resources. The hybrid method used is shown to scale to more complex problems without changing parameters. Proposed comparison metrics, normalized for experimental variables, show the efficiency of this work improves upon published benchmarks. This is achieved without restricting the synthesized topologies to known structures, producing novel results more effective than prior works. •Circuit topology presents a challenging optimization problem.•Expert knowledge improves efficiency but can limit effectiveness of search methods.•Existing search methods have lacked comparisons of efficiency.•State of the art is advanced by critical selection of genetic algorithm parameters.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2020.114267</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Analog circuits ; Analogue filters ; Automation ; Bandpass filters ; Circuit optimization ; Circuit topology ; Design automation ; Efficiency ; Evolutionary algorithms ; Evolutionary computation ; Genetic algorithms ; Isomorphism ; Parameters ; Search methods ; Topology optimization</subject><ispartof>Expert systems with applications, 2021-04, Vol.168, p.114267, Article 114267</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-fa6b96b3da4d860b80ea0c60ee69189e2dbe1180a17ad22109098bcff441e7273</citedby><cites>FETCH-LOGICAL-c328t-fa6b96b3da4d860b80ea0c60ee69189e2dbe1180a17ad22109098bcff441e7273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957417420309787$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Pillans, John</creatorcontrib><title>Efficiency of evolutionary search for analog filter synthesis</title><title>Expert systems with applications</title><description>Design automation presents a trade off between: using expert knowledge to restrict the possible solutions examined; or spending time searching through many, possibly ineffective, solutions. Incorrect assumptions or misapplication of constraints can miss otherwise superior results. Automated search of possible solutions has been shown effective, limited by the available computational resources. This paper presents an evolutionary search method for finding optimized circuit topologies and component values. An example analog filter problem is exhaustively enumerated, to test the efficiency of different stochastic search methods in finding globally optimal solutions. Evolutionary methods are shown to be efficient for this problem. Impacts of varying parameters and techniques of evolutionary search are compared for a more complex asymmetric bandpass filter problem. Genetic Algorithm and Evolutionary Strategy methods are found to have similar performance. Hybrid evolutionary methods using Differential Evolution for component value optimization are found to be more efficient with limited: component count; or computational resources. The hybrid method used is shown to scale to more complex problems without changing parameters. Proposed comparison metrics, normalized for experimental variables, show the efficiency of this work improves upon published benchmarks. This is achieved without restricting the synthesized topologies to known structures, producing novel results more effective than prior works. •Circuit topology presents a challenging optimization problem.•Expert knowledge improves efficiency but can limit effectiveness of search methods.•Existing search methods have lacked comparisons of efficiency.•State of the art is advanced by critical selection of genetic algorithm parameters.</description><subject>Analog circuits</subject><subject>Analogue filters</subject><subject>Automation</subject><subject>Bandpass filters</subject><subject>Circuit optimization</subject><subject>Circuit topology</subject><subject>Design automation</subject><subject>Efficiency</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Genetic algorithms</subject><subject>Isomorphism</subject><subject>Parameters</subject><subject>Search methods</subject><subject>Topology optimization</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz11n0po0oAdZ_IIFL3oOaTpxU2qzJt2V_fd2rWdPA8P7DO88jF0iLBBQXLcLSt9mwYGPCyy5kEdshpUsciFVccxmoG5kXqIsT9lZSi0ASgA5Y3cPznnrqbf7LLiMdqHbDj70Ju6zRCbadeZCzExvuvCROd8NFLO074c1JZ_O2YkzXaKLvzln748Pb8vnfPX69LK8X-W24NWQOyNqJeqiMWVTCagrIANWAJFQWCniTU2IFRiUpuEcQYGqautcWSJJLos5u5rubmL42lIadBu2ceyUNC8VL1AIocYUn1I2hpQiOb2J_nP8RCPogybd6oMmfdCkJ00jdDtBNPbfeYo6_eqgxkeyg26C_w__AYzMcIs</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Pillans, John</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210415</creationdate><title>Efficiency of evolutionary search for analog filter synthesis</title><author>Pillans, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-fa6b96b3da4d860b80ea0c60ee69189e2dbe1180a17ad22109098bcff441e7273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analog circuits</topic><topic>Analogue filters</topic><topic>Automation</topic><topic>Bandpass filters</topic><topic>Circuit optimization</topic><topic>Circuit topology</topic><topic>Design automation</topic><topic>Efficiency</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Genetic algorithms</topic><topic>Isomorphism</topic><topic>Parameters</topic><topic>Search methods</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pillans, John</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pillans, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficiency of evolutionary search for analog filter synthesis</atitle><jtitle>Expert systems with applications</jtitle><date>2021-04-15</date><risdate>2021</risdate><volume>168</volume><spage>114267</spage><pages>114267-</pages><artnum>114267</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Design automation presents a trade off between: using expert knowledge to restrict the possible solutions examined; or spending time searching through many, possibly ineffective, solutions. Incorrect assumptions or misapplication of constraints can miss otherwise superior results. Automated search of possible solutions has been shown effective, limited by the available computational resources. This paper presents an evolutionary search method for finding optimized circuit topologies and component values. An example analog filter problem is exhaustively enumerated, to test the efficiency of different stochastic search methods in finding globally optimal solutions. Evolutionary methods are shown to be efficient for this problem. Impacts of varying parameters and techniques of evolutionary search are compared for a more complex asymmetric bandpass filter problem. Genetic Algorithm and Evolutionary Strategy methods are found to have similar performance. Hybrid evolutionary methods using Differential Evolution for component value optimization are found to be more efficient with limited: component count; or computational resources. The hybrid method used is shown to scale to more complex problems without changing parameters. Proposed comparison metrics, normalized for experimental variables, show the efficiency of this work improves upon published benchmarks. This is achieved without restricting the synthesized topologies to known structures, producing novel results more effective than prior works. •Circuit topology presents a challenging optimization problem.•Expert knowledge improves efficiency but can limit effectiveness of search methods.•Existing search methods have lacked comparisons of efficiency.•State of the art is advanced by critical selection of genetic algorithm parameters.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2020.114267</doi></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2021-04, Vol.168, p.114267, Article 114267
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2492316669
source Elsevier ScienceDirect Journals Complete
subjects Analog circuits
Analogue filters
Automation
Bandpass filters
Circuit optimization
Circuit topology
Design automation
Efficiency
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
Isomorphism
Parameters
Search methods
Topology optimization
title Efficiency of evolutionary search for analog filter synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficiency%20of%20evolutionary%20search%20for%20analog%20filter%20synthesis&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Pillans,%20John&rft.date=2021-04-15&rft.volume=168&rft.spage=114267&rft.pages=114267-&rft.artnum=114267&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2020.114267&rft_dat=%3Cproquest_cross%3E2492316669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492316669&rft_id=info:pmid/&rft_els_id=S0957417420309787&rfr_iscdi=true