Facile hydrothermal synthesis of double shelled Si@SnO2@C as advanced cathode for high-temperature lithium batteries

The elaborately prepared Si-based composites with core-shell structure have greatly optimized the issues of Si electrode volume expansion. However, the preparation processes of most of them are tedious and the solvents used to remove templates is harmful, which affects the development and applicatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2021-03, Vol.858, p.157661, Article 157661
Hauptverfasser: Zhang, Yanyan, Zhao, Yuhong, Niu, Yongqiang, Ren, Jingxia, Hou, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 157661
container_title Journal of alloys and compounds
container_volume 858
creator Zhang, Yanyan
Zhao, Yuhong
Niu, Yongqiang
Ren, Jingxia
Hou, Hua
description The elaborately prepared Si-based composites with core-shell structure have greatly optimized the issues of Si electrode volume expansion. However, the preparation processes of most of them are tedious and the solvents used to remove templates is harmful, which affects the development and application of Si-based electrode materials. Herein, a novel double-shelled Si@SnO2@C composite is successfully designed in one-step by hydrothermal method and verified by X-ray diffraction analysis combined with X ray photoelectron spectroscopy analysis. As the cathode of high-temperature battery, the discharge behavior of Si@SnO2@C composite in the Li–Mg–B alloy/LiNO3–KNO3/Si@SnO2@C battery system has been carried out. It is demonstrated that the as-prepared Si@SnO2@C composite has excellent discharge performance at current densities of 10 mA cm−2 and the specific capacity can be achieved 782.12 mAh g−1 at 200 °C. Even at a much higher temperature of 300 °C, the capacity can still reach 613.67 mAh g−1, and these favorable properties are mainly due to outstanding structure characteristics. The synthesis process is simple and economical, which provides a feasible alternative method for preparation of advanced silicon-based electrode materials to alleviate violent volume expansion. •A unique Si@SnO2@C composite with core-shell structure had been prepared facilely.•Discharge performance of Li–Mg–B alloy/LiNO3–KNO3/Si@SnO2@C cells as high temperature lithium battery is investigated.•The battery exhibits excellent safety from room temperature to 300 °C.
doi_str_mv 10.1016/j.jallcom.2020.157661
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2492316619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820340251</els_id><sourcerecordid>2492316619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-46b9e385858c95bfe3fcd86fdb0cf53ac70f99a5948248e055744a88169773ad3</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVoIW6SnxAQ9LyOtFrtSqekmLotBHJwehZaaZTVsmu5ktbgf18Z-x7mMMPLO18PQo-UrCmh7dO4HvU0mTCva1IXjXdtS2_QioqOVU3byi9oRWTNK8GEuEXfUhoJIVQyukJ5q42fAA8nG0MeIM56wum0L2XyCQeHbVj6YkgDTBNYvPMvu_1b_bLBOmFtj3pvimp0HoIF7ELEg_8YqgzzAaLOSwQ8-Tz4Zca9zhmih3SPvjo9JXi45jv0d_vzffO7en379Wfz47UyjHW5nN5LYIKXMJL3DpgzVrTO9sQ4zrTpiJNSc9mIuhFAOO-aRgtBW9l1TFt2h75f5h5i-LdAymoMS9yXlapuZM1o4SSLi19cJoaUIjh1iH7W8aQoUWfAalRXwOoMWF0Al77nSx-UF44eokrGwxmHj2CyssF_MuE_us-H2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492316619</pqid></control><display><type>article</type><title>Facile hydrothermal synthesis of double shelled Si@SnO2@C as advanced cathode for high-temperature lithium batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Yanyan ; Zhao, Yuhong ; Niu, Yongqiang ; Ren, Jingxia ; Hou, Hua</creator><creatorcontrib>Zhang, Yanyan ; Zhao, Yuhong ; Niu, Yongqiang ; Ren, Jingxia ; Hou, Hua</creatorcontrib><description>The elaborately prepared Si-based composites with core-shell structure have greatly optimized the issues of Si electrode volume expansion. However, the preparation processes of most of them are tedious and the solvents used to remove templates is harmful, which affects the development and application of Si-based electrode materials. Herein, a novel double-shelled Si@SnO2@C composite is successfully designed in one-step by hydrothermal method and verified by X-ray diffraction analysis combined with X ray photoelectron spectroscopy analysis. As the cathode of high-temperature battery, the discharge behavior of Si@SnO2@C composite in the Li–Mg–B alloy/LiNO3–KNO3/Si@SnO2@C battery system has been carried out. It is demonstrated that the as-prepared Si@SnO2@C composite has excellent discharge performance at current densities of 10 mA cm−2 and the specific capacity can be achieved 782.12 mAh g−1 at 200 °C. Even at a much higher temperature of 300 °C, the capacity can still reach 613.67 mAh g−1, and these favorable properties are mainly due to outstanding structure characteristics. The synthesis process is simple and economical, which provides a feasible alternative method for preparation of advanced silicon-based electrode materials to alleviate violent volume expansion. •A unique Si@SnO2@C composite with core-shell structure had been prepared facilely.•Discharge performance of Li–Mg–B alloy/LiNO3–KNO3/Si@SnO2@C cells as high temperature lithium battery is investigated.•The battery exhibits excellent safety from room temperature to 300 °C.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.157661</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Cathode material ; Cathodes ; Core-shell structure ; Discharge ; Discharge performance ; Electrode materials ; Electrodes ; High temperature ; High-temperature lithium battery ; Lithium ; Lithium batteries ; Photoelectrons ; Si@SnO2@C composite ; Silicon ; Synthesis ; Tin dioxide</subject><ispartof>Journal of alloys and compounds, 2021-03, Vol.858, p.157661, Article 157661</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 25, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-46b9e385858c95bfe3fcd86fdb0cf53ac70f99a5948248e055744a88169773ad3</citedby><cites>FETCH-LOGICAL-c337t-46b9e385858c95bfe3fcd86fdb0cf53ac70f99a5948248e055744a88169773ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838820340251$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhang, Yanyan</creatorcontrib><creatorcontrib>Zhao, Yuhong</creatorcontrib><creatorcontrib>Niu, Yongqiang</creatorcontrib><creatorcontrib>Ren, Jingxia</creatorcontrib><creatorcontrib>Hou, Hua</creatorcontrib><title>Facile hydrothermal synthesis of double shelled Si@SnO2@C as advanced cathode for high-temperature lithium batteries</title><title>Journal of alloys and compounds</title><description>The elaborately prepared Si-based composites with core-shell structure have greatly optimized the issues of Si electrode volume expansion. However, the preparation processes of most of them are tedious and the solvents used to remove templates is harmful, which affects the development and application of Si-based electrode materials. Herein, a novel double-shelled Si@SnO2@C composite is successfully designed in one-step by hydrothermal method and verified by X-ray diffraction analysis combined with X ray photoelectron spectroscopy analysis. As the cathode of high-temperature battery, the discharge behavior of Si@SnO2@C composite in the Li–Mg–B alloy/LiNO3–KNO3/Si@SnO2@C battery system has been carried out. It is demonstrated that the as-prepared Si@SnO2@C composite has excellent discharge performance at current densities of 10 mA cm−2 and the specific capacity can be achieved 782.12 mAh g−1 at 200 °C. Even at a much higher temperature of 300 °C, the capacity can still reach 613.67 mAh g−1, and these favorable properties are mainly due to outstanding structure characteristics. The synthesis process is simple and economical, which provides a feasible alternative method for preparation of advanced silicon-based electrode materials to alleviate violent volume expansion. •A unique Si@SnO2@C composite with core-shell structure had been prepared facilely.•Discharge performance of Li–Mg–B alloy/LiNO3–KNO3/Si@SnO2@C cells as high temperature lithium battery is investigated.•The battery exhibits excellent safety from room temperature to 300 °C.</description><subject>Cathode material</subject><subject>Cathodes</subject><subject>Core-shell structure</subject><subject>Discharge</subject><subject>Discharge performance</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>High temperature</subject><subject>High-temperature lithium battery</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Photoelectrons</subject><subject>Si@SnO2@C composite</subject><subject>Silicon</subject><subject>Synthesis</subject><subject>Tin dioxide</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVoIW6SnxAQ9LyOtFrtSqekmLotBHJwehZaaZTVsmu5ktbgf18Z-x7mMMPLO18PQo-UrCmh7dO4HvU0mTCva1IXjXdtS2_QioqOVU3byi9oRWTNK8GEuEXfUhoJIVQyukJ5q42fAA8nG0MeIM56wum0L2XyCQeHbVj6YkgDTBNYvPMvu_1b_bLBOmFtj3pvimp0HoIF7ELEg_8YqgzzAaLOSwQ8-Tz4Zca9zhmih3SPvjo9JXi45jv0d_vzffO7en379Wfz47UyjHW5nN5LYIKXMJL3DpgzVrTO9sQ4zrTpiJNSc9mIuhFAOO-aRgtBW9l1TFt2h75f5h5i-LdAymoMS9yXlapuZM1o4SSLi19cJoaUIjh1iH7W8aQoUWfAalRXwOoMWF0Al77nSx-UF44eokrGwxmHj2CyssF_MuE_us-H2w</recordid><startdate>20210325</startdate><enddate>20210325</enddate><creator>Zhang, Yanyan</creator><creator>Zhao, Yuhong</creator><creator>Niu, Yongqiang</creator><creator>Ren, Jingxia</creator><creator>Hou, Hua</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210325</creationdate><title>Facile hydrothermal synthesis of double shelled Si@SnO2@C as advanced cathode for high-temperature lithium batteries</title><author>Zhang, Yanyan ; Zhao, Yuhong ; Niu, Yongqiang ; Ren, Jingxia ; Hou, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-46b9e385858c95bfe3fcd86fdb0cf53ac70f99a5948248e055744a88169773ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cathode material</topic><topic>Cathodes</topic><topic>Core-shell structure</topic><topic>Discharge</topic><topic>Discharge performance</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>High temperature</topic><topic>High-temperature lithium battery</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Photoelectrons</topic><topic>Si@SnO2@C composite</topic><topic>Silicon</topic><topic>Synthesis</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yanyan</creatorcontrib><creatorcontrib>Zhao, Yuhong</creatorcontrib><creatorcontrib>Niu, Yongqiang</creatorcontrib><creatorcontrib>Ren, Jingxia</creatorcontrib><creatorcontrib>Hou, Hua</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yanyan</au><au>Zhao, Yuhong</au><au>Niu, Yongqiang</au><au>Ren, Jingxia</au><au>Hou, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile hydrothermal synthesis of double shelled Si@SnO2@C as advanced cathode for high-temperature lithium batteries</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-03-25</date><risdate>2021</risdate><volume>858</volume><spage>157661</spage><pages>157661-</pages><artnum>157661</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>The elaborately prepared Si-based composites with core-shell structure have greatly optimized the issues of Si electrode volume expansion. However, the preparation processes of most of them are tedious and the solvents used to remove templates is harmful, which affects the development and application of Si-based electrode materials. Herein, a novel double-shelled Si@SnO2@C composite is successfully designed in one-step by hydrothermal method and verified by X-ray diffraction analysis combined with X ray photoelectron spectroscopy analysis. As the cathode of high-temperature battery, the discharge behavior of Si@SnO2@C composite in the Li–Mg–B alloy/LiNO3–KNO3/Si@SnO2@C battery system has been carried out. It is demonstrated that the as-prepared Si@SnO2@C composite has excellent discharge performance at current densities of 10 mA cm−2 and the specific capacity can be achieved 782.12 mAh g−1 at 200 °C. Even at a much higher temperature of 300 °C, the capacity can still reach 613.67 mAh g−1, and these favorable properties are mainly due to outstanding structure characteristics. The synthesis process is simple and economical, which provides a feasible alternative method for preparation of advanced silicon-based electrode materials to alleviate violent volume expansion. •A unique Si@SnO2@C composite with core-shell structure had been prepared facilely.•Discharge performance of Li–Mg–B alloy/LiNO3–KNO3/Si@SnO2@C cells as high temperature lithium battery is investigated.•The battery exhibits excellent safety from room temperature to 300 °C.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.157661</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2021-03, Vol.858, p.157661, Article 157661
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2492316619
source Elsevier ScienceDirect Journals
subjects Cathode material
Cathodes
Core-shell structure
Discharge
Discharge performance
Electrode materials
Electrodes
High temperature
High-temperature lithium battery
Lithium
Lithium batteries
Photoelectrons
Si@SnO2@C composite
Silicon
Synthesis
Tin dioxide
title Facile hydrothermal synthesis of double shelled Si@SnO2@C as advanced cathode for high-temperature lithium batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A01%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20hydrothermal%20synthesis%20of%20double%20shelled%20Si@SnO2@C%20as%20advanced%20cathode%20for%20high-temperature%20lithium%20batteries&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Zhang,%20Yanyan&rft.date=2021-03-25&rft.volume=858&rft.spage=157661&rft.pages=157661-&rft.artnum=157661&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.157661&rft_dat=%3Cproquest_cross%3E2492316619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492316619&rft_id=info:pmid/&rft_els_id=S0925838820340251&rfr_iscdi=true