Tilted Dirac cone gapped due to spin-orbit coupling and transport properties of a 3D metallic system CaIr2Ge2
We present results of electrical transport (resistance, magnetoresistance, Hall effect) and heat capacity measurements performed on single crystals of the tetragonal compound, CaIr2Ge2. Their analysis is supported by the electronic structure data (band dispersion, density of states, Fermi surface),...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2021-03, Vol.858, p.158260, Article 158260 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 158260 |
container_title | Journal of alloys and compounds |
container_volume | 858 |
creator | Ruszała, Piotr Winiarski, Maciej J. Samsel-Czekała, Małgorzata Tran, Lan Maria Babij, Michał Bukowski, Zbigniew |
description | We present results of electrical transport (resistance, magnetoresistance, Hall effect) and heat capacity measurements performed on single crystals of the tetragonal compound, CaIr2Ge2. Their analysis is supported by the electronic structure data (band dispersion, density of states, Fermi surface), calculated for this three-dimensional (3D) system from first principles, using the full-potential local-orbital code. Interestingly, we have found the highly anisotropic Dirac cone at the Fermi level, in the bulk band structure, being gapped due to the strong p-d hybridization and spin-orbit coupling effects. However, this feature seems to have insignificant influence on the transport properties studied. The compound appears to be metallic-like with a rather low Sommerfeld coefficient (3.23 mJ mol−1 K−2) and non-superconducting even down to 0.1 K. In turn, the transverse magnetoresistance curves do not saturate with magnetic field up to 9 T revealing sub-quadratic scaling but relatively small values (up to 11 % in 2 K) as for Dirac semimetals. We may ascribe these properties to small values of the estimated relaxation time of charge carriers (~10−13 s) and, therefore, small electronic mobilities. Moreover, the angular magnetoresistance exhibits very small anisotropy (~ 1.7 %), in line with weakly anisotropic large 3D Fermi surface sheets, predicted by our calculations.
•Electrical (magneto)transport, heat capacity measured on single crystals of CaIr2Ge2.•Sub-quadratic magnetoresistance, unsaturated at 9 T, reaches only up to 11 % in 2 K.•Metallic-like electronic structure of bulk CaIr2Ge2 calculated from first principles.•Anisotropic and gapped Dirac cone revealed in the band structure at the Fermi level.•Short relaxation times of charge carriers and small electronic mobilities estimated. |
doi_str_mv | 10.1016/j.jallcom.2020.158260 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2492315777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820346235</els_id><sourcerecordid>2492315777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-a26915cb4583e185408bd1dc44dd8f2ffc2e4d22ff093db78511c7b5c48af5f13</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLg-vEThIDnrvlo2vQksuvHguBlPYc0mS4pbVOTVNh_b2S9e5ph5r03bx5Cd5SsKaHVQ7_u9TAYP64ZYXkmJKvIGVpRWfOirKrmHK1Iw0QhuZSX6CrGnhBCG05XaNy7IYHFWxe0wcZPgA96nvPELoCTx3F2U-FD61LeLvPgpgPWk8Up6CnOPiQ8Bz9DSA4i9h3WmG_xCCk7cgbHY0ww4o3eBfYK7AZddHqIcPtXr9Hny_N-81a8f7zuNk_vheG8ToVmVUOFaUshOVApSiJbS60pS2tlx7rOMCgtyw1puG1rKSg1dStMKXUnOsqv0f1JN3v7WiAm1fslTPmkYmXDOBV1XWeUOKFM8DEG6NQc3KjDUVGifpNVvfpLVv0mq07JZt7jiQf5hW8HQUXjYDJgXQCTlPXuH4UfYBuEhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492315777</pqid></control><display><type>article</type><title>Tilted Dirac cone gapped due to spin-orbit coupling and transport properties of a 3D metallic system CaIr2Ge2</title><source>Elsevier ScienceDirect Journals</source><creator>Ruszała, Piotr ; Winiarski, Maciej J. ; Samsel-Czekała, Małgorzata ; Tran, Lan Maria ; Babij, Michał ; Bukowski, Zbigniew</creator><creatorcontrib>Ruszała, Piotr ; Winiarski, Maciej J. ; Samsel-Czekała, Małgorzata ; Tran, Lan Maria ; Babij, Michał ; Bukowski, Zbigniew</creatorcontrib><description>We present results of electrical transport (resistance, magnetoresistance, Hall effect) and heat capacity measurements performed on single crystals of the tetragonal compound, CaIr2Ge2. Their analysis is supported by the electronic structure data (band dispersion, density of states, Fermi surface), calculated for this three-dimensional (3D) system from first principles, using the full-potential local-orbital code. Interestingly, we have found the highly anisotropic Dirac cone at the Fermi level, in the bulk band structure, being gapped due to the strong p-d hybridization and spin-orbit coupling effects. However, this feature seems to have insignificant influence on the transport properties studied. The compound appears to be metallic-like with a rather low Sommerfeld coefficient (3.23 mJ mol−1 K−2) and non-superconducting even down to 0.1 K. In turn, the transverse magnetoresistance curves do not saturate with magnetic field up to 9 T revealing sub-quadratic scaling but relatively small values (up to 11 % in 2 K) as for Dirac semimetals. We may ascribe these properties to small values of the estimated relaxation time of charge carriers (~10−13 s) and, therefore, small electronic mobilities. Moreover, the angular magnetoresistance exhibits very small anisotropy (~ 1.7 %), in line with weakly anisotropic large 3D Fermi surface sheets, predicted by our calculations.
•Electrical (magneto)transport, heat capacity measured on single crystals of CaIr2Ge2.•Sub-quadratic magnetoresistance, unsaturated at 9 T, reaches only up to 11 % in 2 K.•Metallic-like electronic structure of bulk CaIr2Ge2 calculated from first principles.•Anisotropic and gapped Dirac cone revealed in the band structure at the Fermi level.•Short relaxation times of charge carriers and small electronic mobilities estimated.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.158260</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>A. Intermetallics ; Anisotropy ; C. Electrical transport ; Current carriers ; Electronic band structure ; Electronic structure ; Fermi surfaces ; First principles ; Hall effect ; Heat capacity ; Magnetism ; Magnetoresistance ; Magnetoresistivity ; Mathematical analysis ; Metalloids ; Relaxation time ; Single crystals ; Spin-orbit interactions ; Transport properties</subject><ispartof>Journal of alloys and compounds, 2021-03, Vol.858, p.158260, Article 158260</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 25, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-a26915cb4583e185408bd1dc44dd8f2ffc2e4d22ff093db78511c7b5c48af5f13</citedby><cites>FETCH-LOGICAL-c337t-a26915cb4583e185408bd1dc44dd8f2ffc2e4d22ff093db78511c7b5c48af5f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838820346235$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ruszała, Piotr</creatorcontrib><creatorcontrib>Winiarski, Maciej J.</creatorcontrib><creatorcontrib>Samsel-Czekała, Małgorzata</creatorcontrib><creatorcontrib>Tran, Lan Maria</creatorcontrib><creatorcontrib>Babij, Michał</creatorcontrib><creatorcontrib>Bukowski, Zbigniew</creatorcontrib><title>Tilted Dirac cone gapped due to spin-orbit coupling and transport properties of a 3D metallic system CaIr2Ge2</title><title>Journal of alloys and compounds</title><description>We present results of electrical transport (resistance, magnetoresistance, Hall effect) and heat capacity measurements performed on single crystals of the tetragonal compound, CaIr2Ge2. Their analysis is supported by the electronic structure data (band dispersion, density of states, Fermi surface), calculated for this three-dimensional (3D) system from first principles, using the full-potential local-orbital code. Interestingly, we have found the highly anisotropic Dirac cone at the Fermi level, in the bulk band structure, being gapped due to the strong p-d hybridization and spin-orbit coupling effects. However, this feature seems to have insignificant influence on the transport properties studied. The compound appears to be metallic-like with a rather low Sommerfeld coefficient (3.23 mJ mol−1 K−2) and non-superconducting even down to 0.1 K. In turn, the transverse magnetoresistance curves do not saturate with magnetic field up to 9 T revealing sub-quadratic scaling but relatively small values (up to 11 % in 2 K) as for Dirac semimetals. We may ascribe these properties to small values of the estimated relaxation time of charge carriers (~10−13 s) and, therefore, small electronic mobilities. Moreover, the angular magnetoresistance exhibits very small anisotropy (~ 1.7 %), in line with weakly anisotropic large 3D Fermi surface sheets, predicted by our calculations.
•Electrical (magneto)transport, heat capacity measured on single crystals of CaIr2Ge2.•Sub-quadratic magnetoresistance, unsaturated at 9 T, reaches only up to 11 % in 2 K.•Metallic-like electronic structure of bulk CaIr2Ge2 calculated from first principles.•Anisotropic and gapped Dirac cone revealed in the band structure at the Fermi level.•Short relaxation times of charge carriers and small electronic mobilities estimated.</description><subject>A. Intermetallics</subject><subject>Anisotropy</subject><subject>C. Electrical transport</subject><subject>Current carriers</subject><subject>Electronic band structure</subject><subject>Electronic structure</subject><subject>Fermi surfaces</subject><subject>First principles</subject><subject>Hall effect</subject><subject>Heat capacity</subject><subject>Magnetism</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Mathematical analysis</subject><subject>Metalloids</subject><subject>Relaxation time</subject><subject>Single crystals</subject><subject>Spin-orbit interactions</subject><subject>Transport properties</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLg-vEThIDnrvlo2vQksuvHguBlPYc0mS4pbVOTVNh_b2S9e5ph5r03bx5Cd5SsKaHVQ7_u9TAYP64ZYXkmJKvIGVpRWfOirKrmHK1Iw0QhuZSX6CrGnhBCG05XaNy7IYHFWxe0wcZPgA96nvPELoCTx3F2U-FD61LeLvPgpgPWk8Up6CnOPiQ8Bz9DSA4i9h3WmG_xCCk7cgbHY0ww4o3eBfYK7AZddHqIcPtXr9Hny_N-81a8f7zuNk_vheG8ToVmVUOFaUshOVApSiJbS60pS2tlx7rOMCgtyw1puG1rKSg1dStMKXUnOsqv0f1JN3v7WiAm1fslTPmkYmXDOBV1XWeUOKFM8DEG6NQc3KjDUVGifpNVvfpLVv0mq07JZt7jiQf5hW8HQUXjYDJgXQCTlPXuH4UfYBuEhQ</recordid><startdate>20210325</startdate><enddate>20210325</enddate><creator>Ruszała, Piotr</creator><creator>Winiarski, Maciej J.</creator><creator>Samsel-Czekała, Małgorzata</creator><creator>Tran, Lan Maria</creator><creator>Babij, Michał</creator><creator>Bukowski, Zbigniew</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210325</creationdate><title>Tilted Dirac cone gapped due to spin-orbit coupling and transport properties of a 3D metallic system CaIr2Ge2</title><author>Ruszała, Piotr ; Winiarski, Maciej J. ; Samsel-Czekała, Małgorzata ; Tran, Lan Maria ; Babij, Michał ; Bukowski, Zbigniew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-a26915cb4583e185408bd1dc44dd8f2ffc2e4d22ff093db78511c7b5c48af5f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>A. Intermetallics</topic><topic>Anisotropy</topic><topic>C. Electrical transport</topic><topic>Current carriers</topic><topic>Electronic band structure</topic><topic>Electronic structure</topic><topic>Fermi surfaces</topic><topic>First principles</topic><topic>Hall effect</topic><topic>Heat capacity</topic><topic>Magnetism</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Mathematical analysis</topic><topic>Metalloids</topic><topic>Relaxation time</topic><topic>Single crystals</topic><topic>Spin-orbit interactions</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruszała, Piotr</creatorcontrib><creatorcontrib>Winiarski, Maciej J.</creatorcontrib><creatorcontrib>Samsel-Czekała, Małgorzata</creatorcontrib><creatorcontrib>Tran, Lan Maria</creatorcontrib><creatorcontrib>Babij, Michał</creatorcontrib><creatorcontrib>Bukowski, Zbigniew</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruszała, Piotr</au><au>Winiarski, Maciej J.</au><au>Samsel-Czekała, Małgorzata</au><au>Tran, Lan Maria</au><au>Babij, Michał</au><au>Bukowski, Zbigniew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tilted Dirac cone gapped due to spin-orbit coupling and transport properties of a 3D metallic system CaIr2Ge2</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-03-25</date><risdate>2021</risdate><volume>858</volume><spage>158260</spage><pages>158260-</pages><artnum>158260</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>We present results of electrical transport (resistance, magnetoresistance, Hall effect) and heat capacity measurements performed on single crystals of the tetragonal compound, CaIr2Ge2. Their analysis is supported by the electronic structure data (band dispersion, density of states, Fermi surface), calculated for this three-dimensional (3D) system from first principles, using the full-potential local-orbital code. Interestingly, we have found the highly anisotropic Dirac cone at the Fermi level, in the bulk band structure, being gapped due to the strong p-d hybridization and spin-orbit coupling effects. However, this feature seems to have insignificant influence on the transport properties studied. The compound appears to be metallic-like with a rather low Sommerfeld coefficient (3.23 mJ mol−1 K−2) and non-superconducting even down to 0.1 K. In turn, the transverse magnetoresistance curves do not saturate with magnetic field up to 9 T revealing sub-quadratic scaling but relatively small values (up to 11 % in 2 K) as for Dirac semimetals. We may ascribe these properties to small values of the estimated relaxation time of charge carriers (~10−13 s) and, therefore, small electronic mobilities. Moreover, the angular magnetoresistance exhibits very small anisotropy (~ 1.7 %), in line with weakly anisotropic large 3D Fermi surface sheets, predicted by our calculations.
•Electrical (magneto)transport, heat capacity measured on single crystals of CaIr2Ge2.•Sub-quadratic magnetoresistance, unsaturated at 9 T, reaches only up to 11 % in 2 K.•Metallic-like electronic structure of bulk CaIr2Ge2 calculated from first principles.•Anisotropic and gapped Dirac cone revealed in the band structure at the Fermi level.•Short relaxation times of charge carriers and small electronic mobilities estimated.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.158260</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2021-03, Vol.858, p.158260, Article 158260 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2492315777 |
source | Elsevier ScienceDirect Journals |
subjects | A. Intermetallics Anisotropy C. Electrical transport Current carriers Electronic band structure Electronic structure Fermi surfaces First principles Hall effect Heat capacity Magnetism Magnetoresistance Magnetoresistivity Mathematical analysis Metalloids Relaxation time Single crystals Spin-orbit interactions Transport properties |
title | Tilted Dirac cone gapped due to spin-orbit coupling and transport properties of a 3D metallic system CaIr2Ge2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tilted%20Dirac%20cone%20gapped%20due%20to%20spin-orbit%20coupling%20and%20transport%20properties%20of%20a%203D%20metallic%20system%20CaIr2Ge2&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Rusza%C5%82a,%20Piotr&rft.date=2021-03-25&rft.volume=858&rft.spage=158260&rft.pages=158260-&rft.artnum=158260&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.158260&rft_dat=%3Cproquest_cross%3E2492315777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492315777&rft_id=info:pmid/&rft_els_id=S0925838820346235&rfr_iscdi=true |