Tilted Dirac cone gapped due to spin-orbit coupling and transport properties of a 3D metallic system CaIr2Ge2

We present results of electrical transport (resistance, magnetoresistance, Hall effect) and heat capacity measurements performed on single crystals of the tetragonal compound, CaIr2Ge2. Their analysis is supported by the electronic structure data (band dispersion, density of states, Fermi surface),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2021-03, Vol.858, p.158260, Article 158260
Hauptverfasser: Ruszała, Piotr, Winiarski, Maciej J., Samsel-Czekała, Małgorzata, Tran, Lan Maria, Babij, Michał, Bukowski, Zbigniew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 158260
container_title Journal of alloys and compounds
container_volume 858
creator Ruszała, Piotr
Winiarski, Maciej J.
Samsel-Czekała, Małgorzata
Tran, Lan Maria
Babij, Michał
Bukowski, Zbigniew
description We present results of electrical transport (resistance, magnetoresistance, Hall effect) and heat capacity measurements performed on single crystals of the tetragonal compound, CaIr2Ge2. Their analysis is supported by the electronic structure data (band dispersion, density of states, Fermi surface), calculated for this three-dimensional (3D) system from first principles, using the full-potential local-orbital code. Interestingly, we have found the highly anisotropic Dirac cone at the Fermi level, in the bulk band structure, being gapped due to the strong p-d hybridization and spin-orbit coupling effects. However, this feature seems to have insignificant influence on the transport properties studied. The compound appears to be metallic-like with a rather low Sommerfeld coefficient (3.23 mJ mol−1 K−2) and non-superconducting even down to 0.1 K. In turn, the transverse magnetoresistance curves do not saturate with magnetic field up to 9 T revealing sub-quadratic scaling but relatively small values (up to 11 % in 2 K) as for Dirac semimetals. We may ascribe these properties to small values of the estimated relaxation time of charge carriers (~10−13 s) and, therefore, small electronic mobilities. Moreover, the angular magnetoresistance exhibits very small anisotropy (~ 1.7 %), in line with weakly anisotropic large 3D Fermi surface sheets, predicted by our calculations. •Electrical (magneto)transport, heat capacity measured on single crystals of CaIr2Ge2.•Sub-quadratic magnetoresistance, unsaturated at 9 T, reaches only up to 11 % in 2 K.•Metallic-like electronic structure of bulk CaIr2Ge2 calculated from first principles.•Anisotropic and gapped Dirac cone revealed in the band structure at the Fermi level.•Short relaxation times of charge carriers and small electronic mobilities estimated.
doi_str_mv 10.1016/j.jallcom.2020.158260
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2492315777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820346235</els_id><sourcerecordid>2492315777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-a26915cb4583e185408bd1dc44dd8f2ffc2e4d22ff093db78511c7b5c48af5f13</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLg-vEThIDnrvlo2vQksuvHguBlPYc0mS4pbVOTVNh_b2S9e5ph5r03bx5Cd5SsKaHVQ7_u9TAYP64ZYXkmJKvIGVpRWfOirKrmHK1Iw0QhuZSX6CrGnhBCG05XaNy7IYHFWxe0wcZPgA96nvPELoCTx3F2U-FD61LeLvPgpgPWk8Up6CnOPiQ8Bz9DSA4i9h3WmG_xCCk7cgbHY0ww4o3eBfYK7AZddHqIcPtXr9Hny_N-81a8f7zuNk_vheG8ToVmVUOFaUshOVApSiJbS60pS2tlx7rOMCgtyw1puG1rKSg1dStMKXUnOsqv0f1JN3v7WiAm1fslTPmkYmXDOBV1XWeUOKFM8DEG6NQc3KjDUVGifpNVvfpLVv0mq07JZt7jiQf5hW8HQUXjYDJgXQCTlPXuH4UfYBuEhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492315777</pqid></control><display><type>article</type><title>Tilted Dirac cone gapped due to spin-orbit coupling and transport properties of a 3D metallic system CaIr2Ge2</title><source>Elsevier ScienceDirect Journals</source><creator>Ruszała, Piotr ; Winiarski, Maciej J. ; Samsel-Czekała, Małgorzata ; Tran, Lan Maria ; Babij, Michał ; Bukowski, Zbigniew</creator><creatorcontrib>Ruszała, Piotr ; Winiarski, Maciej J. ; Samsel-Czekała, Małgorzata ; Tran, Lan Maria ; Babij, Michał ; Bukowski, Zbigniew</creatorcontrib><description>We present results of electrical transport (resistance, magnetoresistance, Hall effect) and heat capacity measurements performed on single crystals of the tetragonal compound, CaIr2Ge2. Their analysis is supported by the electronic structure data (band dispersion, density of states, Fermi surface), calculated for this three-dimensional (3D) system from first principles, using the full-potential local-orbital code. Interestingly, we have found the highly anisotropic Dirac cone at the Fermi level, in the bulk band structure, being gapped due to the strong p-d hybridization and spin-orbit coupling effects. However, this feature seems to have insignificant influence on the transport properties studied. The compound appears to be metallic-like with a rather low Sommerfeld coefficient (3.23 mJ mol−1 K−2) and non-superconducting even down to 0.1 K. In turn, the transverse magnetoresistance curves do not saturate with magnetic field up to 9 T revealing sub-quadratic scaling but relatively small values (up to 11 % in 2 K) as for Dirac semimetals. We may ascribe these properties to small values of the estimated relaxation time of charge carriers (~10−13 s) and, therefore, small electronic mobilities. Moreover, the angular magnetoresistance exhibits very small anisotropy (~ 1.7 %), in line with weakly anisotropic large 3D Fermi surface sheets, predicted by our calculations. •Electrical (magneto)transport, heat capacity measured on single crystals of CaIr2Ge2.•Sub-quadratic magnetoresistance, unsaturated at 9 T, reaches only up to 11 % in 2 K.•Metallic-like electronic structure of bulk CaIr2Ge2 calculated from first principles.•Anisotropic and gapped Dirac cone revealed in the band structure at the Fermi level.•Short relaxation times of charge carriers and small electronic mobilities estimated.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.158260</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>A. Intermetallics ; Anisotropy ; C. Electrical transport ; Current carriers ; Electronic band structure ; Electronic structure ; Fermi surfaces ; First principles ; Hall effect ; Heat capacity ; Magnetism ; Magnetoresistance ; Magnetoresistivity ; Mathematical analysis ; Metalloids ; Relaxation time ; Single crystals ; Spin-orbit interactions ; Transport properties</subject><ispartof>Journal of alloys and compounds, 2021-03, Vol.858, p.158260, Article 158260</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 25, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-a26915cb4583e185408bd1dc44dd8f2ffc2e4d22ff093db78511c7b5c48af5f13</citedby><cites>FETCH-LOGICAL-c337t-a26915cb4583e185408bd1dc44dd8f2ffc2e4d22ff093db78511c7b5c48af5f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838820346235$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ruszała, Piotr</creatorcontrib><creatorcontrib>Winiarski, Maciej J.</creatorcontrib><creatorcontrib>Samsel-Czekała, Małgorzata</creatorcontrib><creatorcontrib>Tran, Lan Maria</creatorcontrib><creatorcontrib>Babij, Michał</creatorcontrib><creatorcontrib>Bukowski, Zbigniew</creatorcontrib><title>Tilted Dirac cone gapped due to spin-orbit coupling and transport properties of a 3D metallic system CaIr2Ge2</title><title>Journal of alloys and compounds</title><description>We present results of electrical transport (resistance, magnetoresistance, Hall effect) and heat capacity measurements performed on single crystals of the tetragonal compound, CaIr2Ge2. Their analysis is supported by the electronic structure data (band dispersion, density of states, Fermi surface), calculated for this three-dimensional (3D) system from first principles, using the full-potential local-orbital code. Interestingly, we have found the highly anisotropic Dirac cone at the Fermi level, in the bulk band structure, being gapped due to the strong p-d hybridization and spin-orbit coupling effects. However, this feature seems to have insignificant influence on the transport properties studied. The compound appears to be metallic-like with a rather low Sommerfeld coefficient (3.23 mJ mol−1 K−2) and non-superconducting even down to 0.1 K. In turn, the transverse magnetoresistance curves do not saturate with magnetic field up to 9 T revealing sub-quadratic scaling but relatively small values (up to 11 % in 2 K) as for Dirac semimetals. We may ascribe these properties to small values of the estimated relaxation time of charge carriers (~10−13 s) and, therefore, small electronic mobilities. Moreover, the angular magnetoresistance exhibits very small anisotropy (~ 1.7 %), in line with weakly anisotropic large 3D Fermi surface sheets, predicted by our calculations. •Electrical (magneto)transport, heat capacity measured on single crystals of CaIr2Ge2.•Sub-quadratic magnetoresistance, unsaturated at 9 T, reaches only up to 11 % in 2 K.•Metallic-like electronic structure of bulk CaIr2Ge2 calculated from first principles.•Anisotropic and gapped Dirac cone revealed in the band structure at the Fermi level.•Short relaxation times of charge carriers and small electronic mobilities estimated.</description><subject>A. Intermetallics</subject><subject>Anisotropy</subject><subject>C. Electrical transport</subject><subject>Current carriers</subject><subject>Electronic band structure</subject><subject>Electronic structure</subject><subject>Fermi surfaces</subject><subject>First principles</subject><subject>Hall effect</subject><subject>Heat capacity</subject><subject>Magnetism</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Mathematical analysis</subject><subject>Metalloids</subject><subject>Relaxation time</subject><subject>Single crystals</subject><subject>Spin-orbit interactions</subject><subject>Transport properties</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLg-vEThIDnrvlo2vQksuvHguBlPYc0mS4pbVOTVNh_b2S9e5ph5r03bx5Cd5SsKaHVQ7_u9TAYP64ZYXkmJKvIGVpRWfOirKrmHK1Iw0QhuZSX6CrGnhBCG05XaNy7IYHFWxe0wcZPgA96nvPELoCTx3F2U-FD61LeLvPgpgPWk8Up6CnOPiQ8Bz9DSA4i9h3WmG_xCCk7cgbHY0ww4o3eBfYK7AZddHqIcPtXr9Hny_N-81a8f7zuNk_vheG8ToVmVUOFaUshOVApSiJbS60pS2tlx7rOMCgtyw1puG1rKSg1dStMKXUnOsqv0f1JN3v7WiAm1fslTPmkYmXDOBV1XWeUOKFM8DEG6NQc3KjDUVGifpNVvfpLVv0mq07JZt7jiQf5hW8HQUXjYDJgXQCTlPXuH4UfYBuEhQ</recordid><startdate>20210325</startdate><enddate>20210325</enddate><creator>Ruszała, Piotr</creator><creator>Winiarski, Maciej J.</creator><creator>Samsel-Czekała, Małgorzata</creator><creator>Tran, Lan Maria</creator><creator>Babij, Michał</creator><creator>Bukowski, Zbigniew</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210325</creationdate><title>Tilted Dirac cone gapped due to spin-orbit coupling and transport properties of a 3D metallic system CaIr2Ge2</title><author>Ruszała, Piotr ; Winiarski, Maciej J. ; Samsel-Czekała, Małgorzata ; Tran, Lan Maria ; Babij, Michał ; Bukowski, Zbigniew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-a26915cb4583e185408bd1dc44dd8f2ffc2e4d22ff093db78511c7b5c48af5f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>A. Intermetallics</topic><topic>Anisotropy</topic><topic>C. Electrical transport</topic><topic>Current carriers</topic><topic>Electronic band structure</topic><topic>Electronic structure</topic><topic>Fermi surfaces</topic><topic>First principles</topic><topic>Hall effect</topic><topic>Heat capacity</topic><topic>Magnetism</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Mathematical analysis</topic><topic>Metalloids</topic><topic>Relaxation time</topic><topic>Single crystals</topic><topic>Spin-orbit interactions</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruszała, Piotr</creatorcontrib><creatorcontrib>Winiarski, Maciej J.</creatorcontrib><creatorcontrib>Samsel-Czekała, Małgorzata</creatorcontrib><creatorcontrib>Tran, Lan Maria</creatorcontrib><creatorcontrib>Babij, Michał</creatorcontrib><creatorcontrib>Bukowski, Zbigniew</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruszała, Piotr</au><au>Winiarski, Maciej J.</au><au>Samsel-Czekała, Małgorzata</au><au>Tran, Lan Maria</au><au>Babij, Michał</au><au>Bukowski, Zbigniew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tilted Dirac cone gapped due to spin-orbit coupling and transport properties of a 3D metallic system CaIr2Ge2</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-03-25</date><risdate>2021</risdate><volume>858</volume><spage>158260</spage><pages>158260-</pages><artnum>158260</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>We present results of electrical transport (resistance, magnetoresistance, Hall effect) and heat capacity measurements performed on single crystals of the tetragonal compound, CaIr2Ge2. Their analysis is supported by the electronic structure data (band dispersion, density of states, Fermi surface), calculated for this three-dimensional (3D) system from first principles, using the full-potential local-orbital code. Interestingly, we have found the highly anisotropic Dirac cone at the Fermi level, in the bulk band structure, being gapped due to the strong p-d hybridization and spin-orbit coupling effects. However, this feature seems to have insignificant influence on the transport properties studied. The compound appears to be metallic-like with a rather low Sommerfeld coefficient (3.23 mJ mol−1 K−2) and non-superconducting even down to 0.1 K. In turn, the transverse magnetoresistance curves do not saturate with magnetic field up to 9 T revealing sub-quadratic scaling but relatively small values (up to 11 % in 2 K) as for Dirac semimetals. We may ascribe these properties to small values of the estimated relaxation time of charge carriers (~10−13 s) and, therefore, small electronic mobilities. Moreover, the angular magnetoresistance exhibits very small anisotropy (~ 1.7 %), in line with weakly anisotropic large 3D Fermi surface sheets, predicted by our calculations. •Electrical (magneto)transport, heat capacity measured on single crystals of CaIr2Ge2.•Sub-quadratic magnetoresistance, unsaturated at 9 T, reaches only up to 11 % in 2 K.•Metallic-like electronic structure of bulk CaIr2Ge2 calculated from first principles.•Anisotropic and gapped Dirac cone revealed in the band structure at the Fermi level.•Short relaxation times of charge carriers and small electronic mobilities estimated.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.158260</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2021-03, Vol.858, p.158260, Article 158260
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2492315777
source Elsevier ScienceDirect Journals
subjects A. Intermetallics
Anisotropy
C. Electrical transport
Current carriers
Electronic band structure
Electronic structure
Fermi surfaces
First principles
Hall effect
Heat capacity
Magnetism
Magnetoresistance
Magnetoresistivity
Mathematical analysis
Metalloids
Relaxation time
Single crystals
Spin-orbit interactions
Transport properties
title Tilted Dirac cone gapped due to spin-orbit coupling and transport properties of a 3D metallic system CaIr2Ge2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tilted%20Dirac%20cone%20gapped%20due%20to%20spin-orbit%20coupling%20and%20transport%20properties%20of%20a%203D%20metallic%20system%20CaIr2Ge2&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Rusza%C5%82a,%20Piotr&rft.date=2021-03-25&rft.volume=858&rft.spage=158260&rft.pages=158260-&rft.artnum=158260&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.158260&rft_dat=%3Cproquest_cross%3E2492315777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492315777&rft_id=info:pmid/&rft_els_id=S0925838820346235&rfr_iscdi=true