Magnetic properties of dysprosium – Experiment and modeling
Here we present the continuation of the approach developed in our previous work [1] taking another lanthanide metal – Dy – as an example. The rich set of the experimental data which includes data on magnetization (field and temperature dependencies), magnetic susceptibility, heat capacity, magnetoca...
Gespeichert in:
Veröffentlicht in: | Journal of magnetism and magnetic materials 2021-04, Vol.524, p.167593, Article 167593 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 167593 |
container_title | Journal of magnetism and magnetic materials |
container_volume | 524 |
creator | Zverev, Vladimir I. Gimaev, Radel R. Komlev, Aleksei S. Kovalev, Boris B. Queiroz, F.G. Mello, V.D. |
description | Here we present the continuation of the approach developed in our previous work [1] taking another lanthanide metal – Dy – as an example. The rich set of the experimental data which includes data on magnetization (field and temperature dependencies), magnetic susceptibility, heat capacity, magnetocaloric effect and, finally, the critical field dependence on temperature (phase diagram) allows performing the thorough comparison of experimental and modeling results within the molecular field method. An effective field used in the calculations takes a six-fold temperature dependent anisotropy energy, first and second neighbor exchange and Zeeman energy into account. Such an approach allows not only to underline the common trends for the whole lanthanide series taking Tb, Ho and Dy (in this paper) as examples but also partly eliminate the limitations of ab initio calculation in case of 4f elements. |
doi_str_mv | 10.1016/j.jmmm.2020.167593 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2492315750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885320325609</els_id><sourcerecordid>2492315750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-f5989dbba51ef462f2764ec48ac5507516d7d1429f53780a9814663682a89ed63</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFZfwFXAder8_4AupNQfqLjR9TCduSkTmqRmUrE738E39EmcEteuLpx7zr2HD6FLgmcEE3ldz-qmaWYU0yxIJQw7QhOiFSu5kvIYTTDDvNRasFN0llKNMSZcywm6fXbrFoboi23fbaEfIqSiq4qwT1lIcdcUP1_fxeIz72ID7VC4NhRNF2AT2_U5OqncJsHF35yit_vF6_yxXL48PM3vlqVnhg9lJYw2YbVygkDFJa2okhw8184LgZUgMqhAODWVYEpjZzThUjKpqdMGgmRTdDXezZ3ed5AGW3e7vs0vLeWGMiKUwNlFR5fPzVMPld3mzq7fW4LtAZOt7QGTPWCyI6YcuhlDkPt_ROht8hFaDyH24Acbuvhf_Bet2XBa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492315750</pqid></control><display><type>article</type><title>Magnetic properties of dysprosium – Experiment and modeling</title><source>Elsevier ScienceDirect Journals</source><creator>Zverev, Vladimir I. ; Gimaev, Radel R. ; Komlev, Aleksei S. ; Kovalev, Boris B. ; Queiroz, F.G. ; Mello, V.D.</creator><creatorcontrib>Zverev, Vladimir I. ; Gimaev, Radel R. ; Komlev, Aleksei S. ; Kovalev, Boris B. ; Queiroz, F.G. ; Mello, V.D.</creatorcontrib><description>Here we present the continuation of the approach developed in our previous work [1] taking another lanthanide metal – Dy – as an example. The rich set of the experimental data which includes data on magnetization (field and temperature dependencies), magnetic susceptibility, heat capacity, magnetocaloric effect and, finally, the critical field dependence on temperature (phase diagram) allows performing the thorough comparison of experimental and modeling results within the molecular field method. An effective field used in the calculations takes a six-fold temperature dependent anisotropy energy, first and second neighbor exchange and Zeeman energy into account. Such an approach allows not only to underline the common trends for the whole lanthanide series taking Tb, Ho and Dy (in this paper) as examples but also partly eliminate the limitations of ab initio calculation in case of 4f elements.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2020.167593</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropy ; Critical field (superconductivity) ; Dysprosium ; Experiment ; Heat exchange ; Magnetic permeability ; Magnetic phase diagram ; Magnetic properties ; Magnetism ; Magnetothermal properties ; Modelling ; Molecular field model ; Phase diagrams ; Rare earths ; Temperature dependence</subject><ispartof>Journal of magnetism and magnetic materials, 2021-04, Vol.524, p.167593, Article 167593</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-f5989dbba51ef462f2764ec48ac5507516d7d1429f53780a9814663682a89ed63</citedby><cites>FETCH-LOGICAL-c394t-f5989dbba51ef462f2764ec48ac5507516d7d1429f53780a9814663682a89ed63</cites><orcidid>0000-0003-4319-3781 ; 0000-0002-6977-2143 ; 0000-0001-7227-2468 ; 0000-0003-2250-7294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmmm.2020.167593$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Zverev, Vladimir I.</creatorcontrib><creatorcontrib>Gimaev, Radel R.</creatorcontrib><creatorcontrib>Komlev, Aleksei S.</creatorcontrib><creatorcontrib>Kovalev, Boris B.</creatorcontrib><creatorcontrib>Queiroz, F.G.</creatorcontrib><creatorcontrib>Mello, V.D.</creatorcontrib><title>Magnetic properties of dysprosium – Experiment and modeling</title><title>Journal of magnetism and magnetic materials</title><description>Here we present the continuation of the approach developed in our previous work [1] taking another lanthanide metal – Dy – as an example. The rich set of the experimental data which includes data on magnetization (field and temperature dependencies), magnetic susceptibility, heat capacity, magnetocaloric effect and, finally, the critical field dependence on temperature (phase diagram) allows performing the thorough comparison of experimental and modeling results within the molecular field method. An effective field used in the calculations takes a six-fold temperature dependent anisotropy energy, first and second neighbor exchange and Zeeman energy into account. Such an approach allows not only to underline the common trends for the whole lanthanide series taking Tb, Ho and Dy (in this paper) as examples but also partly eliminate the limitations of ab initio calculation in case of 4f elements.</description><subject>Anisotropy</subject><subject>Critical field (superconductivity)</subject><subject>Dysprosium</subject><subject>Experiment</subject><subject>Heat exchange</subject><subject>Magnetic permeability</subject><subject>Magnetic phase diagram</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Magnetothermal properties</subject><subject>Modelling</subject><subject>Molecular field model</subject><subject>Phase diagrams</subject><subject>Rare earths</subject><subject>Temperature dependence</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRsFZfwFXAder8_4AupNQfqLjR9TCduSkTmqRmUrE738E39EmcEteuLpx7zr2HD6FLgmcEE3ldz-qmaWYU0yxIJQw7QhOiFSu5kvIYTTDDvNRasFN0llKNMSZcywm6fXbrFoboi23fbaEfIqSiq4qwT1lIcdcUP1_fxeIz72ID7VC4NhRNF2AT2_U5OqncJsHF35yit_vF6_yxXL48PM3vlqVnhg9lJYw2YbVygkDFJa2okhw8184LgZUgMqhAODWVYEpjZzThUjKpqdMGgmRTdDXezZ3ed5AGW3e7vs0vLeWGMiKUwNlFR5fPzVMPld3mzq7fW4LtAZOt7QGTPWCyI6YcuhlDkPt_ROht8hFaDyH24Acbuvhf_Bet2XBa</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Zverev, Vladimir I.</creator><creator>Gimaev, Radel R.</creator><creator>Komlev, Aleksei S.</creator><creator>Kovalev, Boris B.</creator><creator>Queiroz, F.G.</creator><creator>Mello, V.D.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4319-3781</orcidid><orcidid>https://orcid.org/0000-0002-6977-2143</orcidid><orcidid>https://orcid.org/0000-0001-7227-2468</orcidid><orcidid>https://orcid.org/0000-0003-2250-7294</orcidid></search><sort><creationdate>20210415</creationdate><title>Magnetic properties of dysprosium – Experiment and modeling</title><author>Zverev, Vladimir I. ; Gimaev, Radel R. ; Komlev, Aleksei S. ; Kovalev, Boris B. ; Queiroz, F.G. ; Mello, V.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-f5989dbba51ef462f2764ec48ac5507516d7d1429f53780a9814663682a89ed63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Critical field (superconductivity)</topic><topic>Dysprosium</topic><topic>Experiment</topic><topic>Heat exchange</topic><topic>Magnetic permeability</topic><topic>Magnetic phase diagram</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Magnetothermal properties</topic><topic>Modelling</topic><topic>Molecular field model</topic><topic>Phase diagrams</topic><topic>Rare earths</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zverev, Vladimir I.</creatorcontrib><creatorcontrib>Gimaev, Radel R.</creatorcontrib><creatorcontrib>Komlev, Aleksei S.</creatorcontrib><creatorcontrib>Kovalev, Boris B.</creatorcontrib><creatorcontrib>Queiroz, F.G.</creatorcontrib><creatorcontrib>Mello, V.D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zverev, Vladimir I.</au><au>Gimaev, Radel R.</au><au>Komlev, Aleksei S.</au><au>Kovalev, Boris B.</au><au>Queiroz, F.G.</au><au>Mello, V.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic properties of dysprosium – Experiment and modeling</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2021-04-15</date><risdate>2021</risdate><volume>524</volume><spage>167593</spage><pages>167593-</pages><artnum>167593</artnum><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>Here we present the continuation of the approach developed in our previous work [1] taking another lanthanide metal – Dy – as an example. The rich set of the experimental data which includes data on magnetization (field and temperature dependencies), magnetic susceptibility, heat capacity, magnetocaloric effect and, finally, the critical field dependence on temperature (phase diagram) allows performing the thorough comparison of experimental and modeling results within the molecular field method. An effective field used in the calculations takes a six-fold temperature dependent anisotropy energy, first and second neighbor exchange and Zeeman energy into account. Such an approach allows not only to underline the common trends for the whole lanthanide series taking Tb, Ho and Dy (in this paper) as examples but also partly eliminate the limitations of ab initio calculation in case of 4f elements.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2020.167593</doi><orcidid>https://orcid.org/0000-0003-4319-3781</orcidid><orcidid>https://orcid.org/0000-0002-6977-2143</orcidid><orcidid>https://orcid.org/0000-0001-7227-2468</orcidid><orcidid>https://orcid.org/0000-0003-2250-7294</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-8853 |
ispartof | Journal of magnetism and magnetic materials, 2021-04, Vol.524, p.167593, Article 167593 |
issn | 0304-8853 1873-4766 |
language | eng |
recordid | cdi_proquest_journals_2492315750 |
source | Elsevier ScienceDirect Journals |
subjects | Anisotropy Critical field (superconductivity) Dysprosium Experiment Heat exchange Magnetic permeability Magnetic phase diagram Magnetic properties Magnetism Magnetothermal properties Modelling Molecular field model Phase diagrams Rare earths Temperature dependence |
title | Magnetic properties of dysprosium – Experiment and modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20properties%20of%20dysprosium%20%E2%80%93%20Experiment%20and%20modeling&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Zverev,%20Vladimir%20I.&rft.date=2021-04-15&rft.volume=524&rft.spage=167593&rft.pages=167593-&rft.artnum=167593&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2020.167593&rft_dat=%3Cproquest_cross%3E2492315750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492315750&rft_id=info:pmid/&rft_els_id=S0304885320325609&rfr_iscdi=true |