Magnetic properties of dysprosium – Experiment and modeling

Here we present the continuation of the approach developed in our previous work [1] taking another lanthanide metal – Dy – as an example. The rich set of the experimental data which includes data on magnetization (field and temperature dependencies), magnetic susceptibility, heat capacity, magnetoca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2021-04, Vol.524, p.167593, Article 167593
Hauptverfasser: Zverev, Vladimir I., Gimaev, Radel R., Komlev, Aleksei S., Kovalev, Boris B., Queiroz, F.G., Mello, V.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 167593
container_title Journal of magnetism and magnetic materials
container_volume 524
creator Zverev, Vladimir I.
Gimaev, Radel R.
Komlev, Aleksei S.
Kovalev, Boris B.
Queiroz, F.G.
Mello, V.D.
description Here we present the continuation of the approach developed in our previous work [1] taking another lanthanide metal – Dy – as an example. The rich set of the experimental data which includes data on magnetization (field and temperature dependencies), magnetic susceptibility, heat capacity, magnetocaloric effect and, finally, the critical field dependence on temperature (phase diagram) allows performing the thorough comparison of experimental and modeling results within the molecular field method. An effective field used in the calculations takes a six-fold temperature dependent anisotropy energy, first and second neighbor exchange and Zeeman energy into account. Such an approach allows not only to underline the common trends for the whole lanthanide series taking Tb, Ho and Dy (in this paper) as examples but also partly eliminate the limitations of ab initio calculation in case of 4f elements.
doi_str_mv 10.1016/j.jmmm.2020.167593
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2492315750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885320325609</els_id><sourcerecordid>2492315750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-f5989dbba51ef462f2764ec48ac5507516d7d1429f53780a9814663682a89ed63</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFZfwFXAder8_4AupNQfqLjR9TCduSkTmqRmUrE738E39EmcEteuLpx7zr2HD6FLgmcEE3ldz-qmaWYU0yxIJQw7QhOiFSu5kvIYTTDDvNRasFN0llKNMSZcywm6fXbrFoboi23fbaEfIqSiq4qwT1lIcdcUP1_fxeIz72ID7VC4NhRNF2AT2_U5OqncJsHF35yit_vF6_yxXL48PM3vlqVnhg9lJYw2YbVygkDFJa2okhw8184LgZUgMqhAODWVYEpjZzThUjKpqdMGgmRTdDXezZ3ed5AGW3e7vs0vLeWGMiKUwNlFR5fPzVMPld3mzq7fW4LtAZOt7QGTPWCyI6YcuhlDkPt_ROht8hFaDyH24Acbuvhf_Bet2XBa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492315750</pqid></control><display><type>article</type><title>Magnetic properties of dysprosium – Experiment and modeling</title><source>Elsevier ScienceDirect Journals</source><creator>Zverev, Vladimir I. ; Gimaev, Radel R. ; Komlev, Aleksei S. ; Kovalev, Boris B. ; Queiroz, F.G. ; Mello, V.D.</creator><creatorcontrib>Zverev, Vladimir I. ; Gimaev, Radel R. ; Komlev, Aleksei S. ; Kovalev, Boris B. ; Queiroz, F.G. ; Mello, V.D.</creatorcontrib><description>Here we present the continuation of the approach developed in our previous work [1] taking another lanthanide metal – Dy – as an example. The rich set of the experimental data which includes data on magnetization (field and temperature dependencies), magnetic susceptibility, heat capacity, magnetocaloric effect and, finally, the critical field dependence on temperature (phase diagram) allows performing the thorough comparison of experimental and modeling results within the molecular field method. An effective field used in the calculations takes a six-fold temperature dependent anisotropy energy, first and second neighbor exchange and Zeeman energy into account. Such an approach allows not only to underline the common trends for the whole lanthanide series taking Tb, Ho and Dy (in this paper) as examples but also partly eliminate the limitations of ab initio calculation in case of 4f elements.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2020.167593</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropy ; Critical field (superconductivity) ; Dysprosium ; Experiment ; Heat exchange ; Magnetic permeability ; Magnetic phase diagram ; Magnetic properties ; Magnetism ; Magnetothermal properties ; Modelling ; Molecular field model ; Phase diagrams ; Rare earths ; Temperature dependence</subject><ispartof>Journal of magnetism and magnetic materials, 2021-04, Vol.524, p.167593, Article 167593</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-f5989dbba51ef462f2764ec48ac5507516d7d1429f53780a9814663682a89ed63</citedby><cites>FETCH-LOGICAL-c394t-f5989dbba51ef462f2764ec48ac5507516d7d1429f53780a9814663682a89ed63</cites><orcidid>0000-0003-4319-3781 ; 0000-0002-6977-2143 ; 0000-0001-7227-2468 ; 0000-0003-2250-7294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmmm.2020.167593$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Zverev, Vladimir I.</creatorcontrib><creatorcontrib>Gimaev, Radel R.</creatorcontrib><creatorcontrib>Komlev, Aleksei S.</creatorcontrib><creatorcontrib>Kovalev, Boris B.</creatorcontrib><creatorcontrib>Queiroz, F.G.</creatorcontrib><creatorcontrib>Mello, V.D.</creatorcontrib><title>Magnetic properties of dysprosium – Experiment and modeling</title><title>Journal of magnetism and magnetic materials</title><description>Here we present the continuation of the approach developed in our previous work [1] taking another lanthanide metal – Dy – as an example. The rich set of the experimental data which includes data on magnetization (field and temperature dependencies), magnetic susceptibility, heat capacity, magnetocaloric effect and, finally, the critical field dependence on temperature (phase diagram) allows performing the thorough comparison of experimental and modeling results within the molecular field method. An effective field used in the calculations takes a six-fold temperature dependent anisotropy energy, first and second neighbor exchange and Zeeman energy into account. Such an approach allows not only to underline the common trends for the whole lanthanide series taking Tb, Ho and Dy (in this paper) as examples but also partly eliminate the limitations of ab initio calculation in case of 4f elements.</description><subject>Anisotropy</subject><subject>Critical field (superconductivity)</subject><subject>Dysprosium</subject><subject>Experiment</subject><subject>Heat exchange</subject><subject>Magnetic permeability</subject><subject>Magnetic phase diagram</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Magnetothermal properties</subject><subject>Modelling</subject><subject>Molecular field model</subject><subject>Phase diagrams</subject><subject>Rare earths</subject><subject>Temperature dependence</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRsFZfwFXAder8_4AupNQfqLjR9TCduSkTmqRmUrE738E39EmcEteuLpx7zr2HD6FLgmcEE3ldz-qmaWYU0yxIJQw7QhOiFSu5kvIYTTDDvNRasFN0llKNMSZcywm6fXbrFoboi23fbaEfIqSiq4qwT1lIcdcUP1_fxeIz72ID7VC4NhRNF2AT2_U5OqncJsHF35yit_vF6_yxXL48PM3vlqVnhg9lJYw2YbVygkDFJa2okhw8184LgZUgMqhAODWVYEpjZzThUjKpqdMGgmRTdDXezZ3ed5AGW3e7vs0vLeWGMiKUwNlFR5fPzVMPld3mzq7fW4LtAZOt7QGTPWCyI6YcuhlDkPt_ROht8hFaDyH24Acbuvhf_Bet2XBa</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Zverev, Vladimir I.</creator><creator>Gimaev, Radel R.</creator><creator>Komlev, Aleksei S.</creator><creator>Kovalev, Boris B.</creator><creator>Queiroz, F.G.</creator><creator>Mello, V.D.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4319-3781</orcidid><orcidid>https://orcid.org/0000-0002-6977-2143</orcidid><orcidid>https://orcid.org/0000-0001-7227-2468</orcidid><orcidid>https://orcid.org/0000-0003-2250-7294</orcidid></search><sort><creationdate>20210415</creationdate><title>Magnetic properties of dysprosium – Experiment and modeling</title><author>Zverev, Vladimir I. ; Gimaev, Radel R. ; Komlev, Aleksei S. ; Kovalev, Boris B. ; Queiroz, F.G. ; Mello, V.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-f5989dbba51ef462f2764ec48ac5507516d7d1429f53780a9814663682a89ed63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Critical field (superconductivity)</topic><topic>Dysprosium</topic><topic>Experiment</topic><topic>Heat exchange</topic><topic>Magnetic permeability</topic><topic>Magnetic phase diagram</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Magnetothermal properties</topic><topic>Modelling</topic><topic>Molecular field model</topic><topic>Phase diagrams</topic><topic>Rare earths</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zverev, Vladimir I.</creatorcontrib><creatorcontrib>Gimaev, Radel R.</creatorcontrib><creatorcontrib>Komlev, Aleksei S.</creatorcontrib><creatorcontrib>Kovalev, Boris B.</creatorcontrib><creatorcontrib>Queiroz, F.G.</creatorcontrib><creatorcontrib>Mello, V.D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zverev, Vladimir I.</au><au>Gimaev, Radel R.</au><au>Komlev, Aleksei S.</au><au>Kovalev, Boris B.</au><au>Queiroz, F.G.</au><au>Mello, V.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic properties of dysprosium – Experiment and modeling</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2021-04-15</date><risdate>2021</risdate><volume>524</volume><spage>167593</spage><pages>167593-</pages><artnum>167593</artnum><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>Here we present the continuation of the approach developed in our previous work [1] taking another lanthanide metal – Dy – as an example. The rich set of the experimental data which includes data on magnetization (field and temperature dependencies), magnetic susceptibility, heat capacity, magnetocaloric effect and, finally, the critical field dependence on temperature (phase diagram) allows performing the thorough comparison of experimental and modeling results within the molecular field method. An effective field used in the calculations takes a six-fold temperature dependent anisotropy energy, first and second neighbor exchange and Zeeman energy into account. Such an approach allows not only to underline the common trends for the whole lanthanide series taking Tb, Ho and Dy (in this paper) as examples but also partly eliminate the limitations of ab initio calculation in case of 4f elements.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2020.167593</doi><orcidid>https://orcid.org/0000-0003-4319-3781</orcidid><orcidid>https://orcid.org/0000-0002-6977-2143</orcidid><orcidid>https://orcid.org/0000-0001-7227-2468</orcidid><orcidid>https://orcid.org/0000-0003-2250-7294</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2021-04, Vol.524, p.167593, Article 167593
issn 0304-8853
1873-4766
language eng
recordid cdi_proquest_journals_2492315750
source Elsevier ScienceDirect Journals
subjects Anisotropy
Critical field (superconductivity)
Dysprosium
Experiment
Heat exchange
Magnetic permeability
Magnetic phase diagram
Magnetic properties
Magnetism
Magnetothermal properties
Modelling
Molecular field model
Phase diagrams
Rare earths
Temperature dependence
title Magnetic properties of dysprosium – Experiment and modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20properties%20of%20dysprosium%20%E2%80%93%20Experiment%20and%20modeling&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Zverev,%20Vladimir%20I.&rft.date=2021-04-15&rft.volume=524&rft.spage=167593&rft.pages=167593-&rft.artnum=167593&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2020.167593&rft_dat=%3Cproquest_cross%3E2492315750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492315750&rft_id=info:pmid/&rft_els_id=S0304885320325609&rfr_iscdi=true