Ultrawide-bandgap semiconductor AlN crystals: growth and applications

In recent years, ultrawide bandgap semiconductor materials represented by aluminum nitride (AlN) have attracted worldwide attention due to their excellent high-frequency power characteristics, stable high-temperature performance, low energy loss, and good ultraviolet (UV) transmittance. They have gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2021-01, Vol.9 (6), p.1852-1873
Hauptverfasser: Yu, Ruixian, Liu, Guangxia, Wang, Guodong, Chen, Chengmin, Xu, Mingsheng, Zhou, Hong, Wang, Tailin, Yu, Jiaoxian, Zhao, Gang, Zhang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1873
container_issue 6
container_start_page 1852
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 9
creator Yu, Ruixian
Liu, Guangxia
Wang, Guodong
Chen, Chengmin
Xu, Mingsheng
Zhou, Hong
Wang, Tailin
Yu, Jiaoxian
Zhao, Gang
Zhang, Lei
description In recent years, ultrawide bandgap semiconductor materials represented by aluminum nitride (AlN) have attracted worldwide attention due to their excellent high-frequency power characteristics, stable high-temperature performance, low energy loss, and good ultraviolet (UV) transmittance. They have great application prospects in the fields of high-efficiency optoelectronic devices, high-power and high-frequency electronic devices, ultra-high voltage power electronic devices, deep UV warning and guidance, and deep UV-LED disinfection. The physical vapor transport (PVT) method has the advantages of a simple growth process, fast growth rate, and high crystal integrity, and has gradually become one of the most effective methods for growing bulk AlN crystals. This review systematically summarizes the latest research progress in AlN crystals grown by the PVT method in recent years, and introduces their applications in deep UV-LEDs, UV lasers and Schottky barrier diodes (SBDs). Finally, the challenges and application prospects of AlN crystals are discussed. As an important new type of direct bandgap ultrawide bandgap semiconductor material, AlN crystals have shown extremely important strategic application value. The output power of deep UV-LED devices meets practical requirements, and high-power electronic power devices are still in the verification stage. From the perspective of material superiority, they have considerable development potential. This review systematically summarizes the latest research advances of AlN crystals grown by the PVT method and their applications.
doi_str_mv 10.1039/d0tc04182c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2492230239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492230239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-d220bc069304fcc0d56cdbf0d8a155eea37bb0f8b7b5caacb099097ccb392d513</originalsourceid><addsrcrecordid>eNpF0N9LwzAQB_AgCo65F9-Fgm9C9ZI0bePbqPMHDH3ZnktySWdH19YkZey_tzqZ93IH9-EOvoRcU7inwOWDgYCQ0JzhGZkwEBBngifnp5mll2Tm_RbGymmap3JCFusmOLWvjY21as1G9ZG3uxq71gwYOhfNm_cI3cEH1fjHaOO6ffiMRhmpvm9qVKHuWn9FLqpxb2d_fUrWz4tV8RovP17eivkyRp4nITaMgUZIJYekQgQjUjS6ApMrKoS1imdaQ5XrTAtUCjVICTJD1FwyIyifktvj3d51X4P1odx2g2vHlyVLJGMcGJejujsqdJ33zlZl7-qdcoeSQvmTVPkEq-I3qWLEN0fsPJ7cf5L8G32PZb8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492230239</pqid></control><display><type>article</type><title>Ultrawide-bandgap semiconductor AlN crystals: growth and applications</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Yu, Ruixian ; Liu, Guangxia ; Wang, Guodong ; Chen, Chengmin ; Xu, Mingsheng ; Zhou, Hong ; Wang, Tailin ; Yu, Jiaoxian ; Zhao, Gang ; Zhang, Lei</creator><creatorcontrib>Yu, Ruixian ; Liu, Guangxia ; Wang, Guodong ; Chen, Chengmin ; Xu, Mingsheng ; Zhou, Hong ; Wang, Tailin ; Yu, Jiaoxian ; Zhao, Gang ; Zhang, Lei</creatorcontrib><description>In recent years, ultrawide bandgap semiconductor materials represented by aluminum nitride (AlN) have attracted worldwide attention due to their excellent high-frequency power characteristics, stable high-temperature performance, low energy loss, and good ultraviolet (UV) transmittance. They have great application prospects in the fields of high-efficiency optoelectronic devices, high-power and high-frequency electronic devices, ultra-high voltage power electronic devices, deep UV warning and guidance, and deep UV-LED disinfection. The physical vapor transport (PVT) method has the advantages of a simple growth process, fast growth rate, and high crystal integrity, and has gradually become one of the most effective methods for growing bulk AlN crystals. This review systematically summarizes the latest research progress in AlN crystals grown by the PVT method in recent years, and introduces their applications in deep UV-LEDs, UV lasers and Schottky barrier diodes (SBDs). Finally, the challenges and application prospects of AlN crystals are discussed. As an important new type of direct bandgap ultrawide bandgap semiconductor material, AlN crystals have shown extremely important strategic application value. The output power of deep UV-LED devices meets practical requirements, and high-power electronic power devices are still in the verification stage. From the perspective of material superiority, they have considerable development potential. This review systematically summarizes the latest research advances of AlN crystals grown by the PVT method and their applications.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d0tc04182c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum nitride ; Crystal growth ; Crystals ; Electronic devices ; Energy dissipation ; Light emitting diodes ; Optoelectronic devices ; Schottky diodes ; Semiconductor materials ; Thermal stability ; Ultraviolet lasers ; Wide bandgap semiconductors</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2021-01, Vol.9 (6), p.1852-1873</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-d220bc069304fcc0d56cdbf0d8a155eea37bb0f8b7b5caacb099097ccb392d513</citedby><cites>FETCH-LOGICAL-c384t-d220bc069304fcc0d56cdbf0d8a155eea37bb0f8b7b5caacb099097ccb392d513</cites><orcidid>0000-0002-8781-1302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yu, Ruixian</creatorcontrib><creatorcontrib>Liu, Guangxia</creatorcontrib><creatorcontrib>Wang, Guodong</creatorcontrib><creatorcontrib>Chen, Chengmin</creatorcontrib><creatorcontrib>Xu, Mingsheng</creatorcontrib><creatorcontrib>Zhou, Hong</creatorcontrib><creatorcontrib>Wang, Tailin</creatorcontrib><creatorcontrib>Yu, Jiaoxian</creatorcontrib><creatorcontrib>Zhao, Gang</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><title>Ultrawide-bandgap semiconductor AlN crystals: growth and applications</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>In recent years, ultrawide bandgap semiconductor materials represented by aluminum nitride (AlN) have attracted worldwide attention due to their excellent high-frequency power characteristics, stable high-temperature performance, low energy loss, and good ultraviolet (UV) transmittance. They have great application prospects in the fields of high-efficiency optoelectronic devices, high-power and high-frequency electronic devices, ultra-high voltage power electronic devices, deep UV warning and guidance, and deep UV-LED disinfection. The physical vapor transport (PVT) method has the advantages of a simple growth process, fast growth rate, and high crystal integrity, and has gradually become one of the most effective methods for growing bulk AlN crystals. This review systematically summarizes the latest research progress in AlN crystals grown by the PVT method in recent years, and introduces their applications in deep UV-LEDs, UV lasers and Schottky barrier diodes (SBDs). Finally, the challenges and application prospects of AlN crystals are discussed. As an important new type of direct bandgap ultrawide bandgap semiconductor material, AlN crystals have shown extremely important strategic application value. The output power of deep UV-LED devices meets practical requirements, and high-power electronic power devices are still in the verification stage. From the perspective of material superiority, they have considerable development potential. This review systematically summarizes the latest research advances of AlN crystals grown by the PVT method and their applications.</description><subject>Aluminum nitride</subject><subject>Crystal growth</subject><subject>Crystals</subject><subject>Electronic devices</subject><subject>Energy dissipation</subject><subject>Light emitting diodes</subject><subject>Optoelectronic devices</subject><subject>Schottky diodes</subject><subject>Semiconductor materials</subject><subject>Thermal stability</subject><subject>Ultraviolet lasers</subject><subject>Wide bandgap semiconductors</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpF0N9LwzAQB_AgCo65F9-Fgm9C9ZI0bePbqPMHDH3ZnktySWdH19YkZey_tzqZ93IH9-EOvoRcU7inwOWDgYCQ0JzhGZkwEBBngifnp5mll2Tm_RbGymmap3JCFusmOLWvjY21as1G9ZG3uxq71gwYOhfNm_cI3cEH1fjHaOO6ffiMRhmpvm9qVKHuWn9FLqpxb2d_fUrWz4tV8RovP17eivkyRp4nITaMgUZIJYekQgQjUjS6ApMrKoS1imdaQ5XrTAtUCjVICTJD1FwyIyifktvj3d51X4P1odx2g2vHlyVLJGMcGJejujsqdJ33zlZl7-qdcoeSQvmTVPkEq-I3qWLEN0fsPJ7cf5L8G32PZb8</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Yu, Ruixian</creator><creator>Liu, Guangxia</creator><creator>Wang, Guodong</creator><creator>Chen, Chengmin</creator><creator>Xu, Mingsheng</creator><creator>Zhou, Hong</creator><creator>Wang, Tailin</creator><creator>Yu, Jiaoxian</creator><creator>Zhao, Gang</creator><creator>Zhang, Lei</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8781-1302</orcidid></search><sort><creationdate>20210101</creationdate><title>Ultrawide-bandgap semiconductor AlN crystals: growth and applications</title><author>Yu, Ruixian ; Liu, Guangxia ; Wang, Guodong ; Chen, Chengmin ; Xu, Mingsheng ; Zhou, Hong ; Wang, Tailin ; Yu, Jiaoxian ; Zhao, Gang ; Zhang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-d220bc069304fcc0d56cdbf0d8a155eea37bb0f8b7b5caacb099097ccb392d513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum nitride</topic><topic>Crystal growth</topic><topic>Crystals</topic><topic>Electronic devices</topic><topic>Energy dissipation</topic><topic>Light emitting diodes</topic><topic>Optoelectronic devices</topic><topic>Schottky diodes</topic><topic>Semiconductor materials</topic><topic>Thermal stability</topic><topic>Ultraviolet lasers</topic><topic>Wide bandgap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Ruixian</creatorcontrib><creatorcontrib>Liu, Guangxia</creatorcontrib><creatorcontrib>Wang, Guodong</creatorcontrib><creatorcontrib>Chen, Chengmin</creatorcontrib><creatorcontrib>Xu, Mingsheng</creatorcontrib><creatorcontrib>Zhou, Hong</creatorcontrib><creatorcontrib>Wang, Tailin</creatorcontrib><creatorcontrib>Yu, Jiaoxian</creatorcontrib><creatorcontrib>Zhao, Gang</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Ruixian</au><au>Liu, Guangxia</au><au>Wang, Guodong</au><au>Chen, Chengmin</au><au>Xu, Mingsheng</au><au>Zhou, Hong</au><au>Wang, Tailin</au><au>Yu, Jiaoxian</au><au>Zhao, Gang</au><au>Zhang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrawide-bandgap semiconductor AlN crystals: growth and applications</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><issue>6</issue><spage>1852</spage><epage>1873</epage><pages>1852-1873</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>In recent years, ultrawide bandgap semiconductor materials represented by aluminum nitride (AlN) have attracted worldwide attention due to their excellent high-frequency power characteristics, stable high-temperature performance, low energy loss, and good ultraviolet (UV) transmittance. They have great application prospects in the fields of high-efficiency optoelectronic devices, high-power and high-frequency electronic devices, ultra-high voltage power electronic devices, deep UV warning and guidance, and deep UV-LED disinfection. The physical vapor transport (PVT) method has the advantages of a simple growth process, fast growth rate, and high crystal integrity, and has gradually become one of the most effective methods for growing bulk AlN crystals. This review systematically summarizes the latest research progress in AlN crystals grown by the PVT method in recent years, and introduces their applications in deep UV-LEDs, UV lasers and Schottky barrier diodes (SBDs). Finally, the challenges and application prospects of AlN crystals are discussed. As an important new type of direct bandgap ultrawide bandgap semiconductor material, AlN crystals have shown extremely important strategic application value. The output power of deep UV-LED devices meets practical requirements, and high-power electronic power devices are still in the verification stage. From the perspective of material superiority, they have considerable development potential. This review systematically summarizes the latest research advances of AlN crystals grown by the PVT method and their applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0tc04182c</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-8781-1302</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2021-01, Vol.9 (6), p.1852-1873
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2492230239
source Royal Society Of Chemistry Journals 2008-
subjects Aluminum nitride
Crystal growth
Crystals
Electronic devices
Energy dissipation
Light emitting diodes
Optoelectronic devices
Schottky diodes
Semiconductor materials
Thermal stability
Ultraviolet lasers
Wide bandgap semiconductors
title Ultrawide-bandgap semiconductor AlN crystals: growth and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A20%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrawide-bandgap%20semiconductor%20AlN%20crystals:%20growth%20and%20applications&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Yu,%20Ruixian&rft.date=2021-01-01&rft.volume=9&rft.issue=6&rft.spage=1852&rft.epage=1873&rft.pages=1852-1873&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d0tc04182c&rft_dat=%3Cproquest_cross%3E2492230239%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492230239&rft_id=info:pmid/&rfr_iscdi=true