Binary Grey Wolf Optimization-Regularized Extreme Learning Machine Wrapper Coupled with the Boruta Algorithm for Monthly Streamflow Forecasting
Input variable selection plays a key role in data-driven streamflow forecasting models. In this study, we propose a two-stage wrapper model to drive one-month-ahead streamflow forecasting in the context of high-dimensional candidate input variables. Initially, the Boruta algorithm, a feature selecti...
Gespeichert in:
Veröffentlicht in: | Water resources management 2021-02, Vol.35 (3), p.1029-1045 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1045 |
---|---|
container_issue | 3 |
container_start_page | 1029 |
container_title | Water resources management |
container_volume | 35 |
creator | Qu, Jihong Ren, Kun Shi, Xiaoyu |
description | Input variable selection plays a key role in data-driven streamflow forecasting models. In this study, we propose a two-stage wrapper model to drive one-month-ahead streamflow forecasting in the context of high-dimensional candidate input variables. Initially, the Boruta algorithm, a feature selection method, was applied to select all the relevant input variables for the streamflow series. Then, a novel binary grey wolf optimizer (BGWO)-regularized extreme learning machine (RELM) wrapper was derived. We carried out experiments on two US catchments with 132 candidate input variables, including local meteorological information, global climatic indices, and lags of the streamflow series. Furthermore, the sensitivities of the proposed model in terms of the optimal objective function were compared. The results indicate two important findings. First, the proposed model outperformed commonly used models in terms of four error evaluation criteria. Second, for the proposed model, the root mean square error is a more suitable criterion than the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) for the optimal objective function. These findings are of great reference value for developing ELM models for streamflow forecasting. |
doi_str_mv | 10.1007/s11269-021-02770-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2492126393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492126393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-521fdecc451a16e60c32e504f5a4a0adab0f45df3d0858fc8f530ce0c244bac83</originalsourceid><addsrcrecordid>eNp9kE1rFEEQhhtRcI3-AU8Nnkerv3Z2jsmSRGFDwA9ybDo91bsdZqbH6h7i5k_4l21dwZuHoqB43rfgYeytgPcCoP2QhZDrrgEp6rQtNOIZWwnTqkasDTxnK-gkNLrV4iV7lfMDQI11sGI_L-Lk6MivCY_8Lg2B384ljvHJlZim5jPul8FRfMKeX_4ohCPyHTqa4rTnN84f4oT8jtw8I_FtWuahgo-xHHg5IL9ItBTHz4d9onobeUjEb9JUDsORf6ltbgxDeuRXidC7XGrpa_YiuCHjm7_7jH27uvy6_djsbq8_bc93jVeiK42RIvTovTbCiTWuwSuJBnQwTjtwvbuHoE0fVA8bswl-E4wCj-Cl1vfOb9QZe3fqnSl9XzAX-5AWmupLK3Unq03VqUrJE-Up5UwY7ExxrL6sAPtbvD2Jt1W8_SPeihpSp1Cu8LRH-lf9n9Qv_p-JYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492126393</pqid></control><display><type>article</type><title>Binary Grey Wolf Optimization-Regularized Extreme Learning Machine Wrapper Coupled with the Boruta Algorithm for Monthly Streamflow Forecasting</title><source>SpringerLink Journals</source><creator>Qu, Jihong ; Ren, Kun ; Shi, Xiaoyu</creator><creatorcontrib>Qu, Jihong ; Ren, Kun ; Shi, Xiaoyu</creatorcontrib><description>Input variable selection plays a key role in data-driven streamflow forecasting models. In this study, we propose a two-stage wrapper model to drive one-month-ahead streamflow forecasting in the context of high-dimensional candidate input variables. Initially, the Boruta algorithm, a feature selection method, was applied to select all the relevant input variables for the streamflow series. Then, a novel binary grey wolf optimizer (BGWO)-regularized extreme learning machine (RELM) wrapper was derived. We carried out experiments on two US catchments with 132 candidate input variables, including local meteorological information, global climatic indices, and lags of the streamflow series. Furthermore, the sensitivities of the proposed model in terms of the optimal objective function were compared. The results indicate two important findings. First, the proposed model outperformed commonly used models in terms of four error evaluation criteria. Second, for the proposed model, the root mean square error is a more suitable criterion than the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) for the optimal objective function. These findings are of great reference value for developing ELM models for streamflow forecasting.</description><identifier>ISSN: 0920-4741</identifier><identifier>EISSN: 1573-1650</identifier><identifier>DOI: 10.1007/s11269-021-02770-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial neural networks ; Atmospheric Sciences ; Bayesian analysis ; Catchment area ; Catchments ; Civil Engineering ; Criteria ; Earth and Environmental Science ; Earth Sciences ; Environment ; Forecasting ; Geotechnical Engineering & Applied Earth Sciences ; Global climate ; Hydrogeology ; Hydrology/Water Resources ; Learning algorithms ; Machine learning ; Mathematical models ; Objective function ; Optimization ; Probability theory ; Stream discharge ; Stream flow ; Streamflow forecasting ; Variables</subject><ispartof>Water resources management, 2021-02, Vol.35 (3), p.1029-1045</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-521fdecc451a16e60c32e504f5a4a0adab0f45df3d0858fc8f530ce0c244bac83</citedby><cites>FETCH-LOGICAL-c319t-521fdecc451a16e60c32e504f5a4a0adab0f45df3d0858fc8f530ce0c244bac83</cites><orcidid>0000-0002-7472-439X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11269-021-02770-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11269-021-02770-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Qu, Jihong</creatorcontrib><creatorcontrib>Ren, Kun</creatorcontrib><creatorcontrib>Shi, Xiaoyu</creatorcontrib><title>Binary Grey Wolf Optimization-Regularized Extreme Learning Machine Wrapper Coupled with the Boruta Algorithm for Monthly Streamflow Forecasting</title><title>Water resources management</title><addtitle>Water Resour Manage</addtitle><description>Input variable selection plays a key role in data-driven streamflow forecasting models. In this study, we propose a two-stage wrapper model to drive one-month-ahead streamflow forecasting in the context of high-dimensional candidate input variables. Initially, the Boruta algorithm, a feature selection method, was applied to select all the relevant input variables for the streamflow series. Then, a novel binary grey wolf optimizer (BGWO)-regularized extreme learning machine (RELM) wrapper was derived. We carried out experiments on two US catchments with 132 candidate input variables, including local meteorological information, global climatic indices, and lags of the streamflow series. Furthermore, the sensitivities of the proposed model in terms of the optimal objective function were compared. The results indicate two important findings. First, the proposed model outperformed commonly used models in terms of four error evaluation criteria. Second, for the proposed model, the root mean square error is a more suitable criterion than the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) for the optimal objective function. These findings are of great reference value for developing ELM models for streamflow forecasting.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Atmospheric Sciences</subject><subject>Bayesian analysis</subject><subject>Catchment area</subject><subject>Catchments</subject><subject>Civil Engineering</subject><subject>Criteria</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Forecasting</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Global climate</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Objective function</subject><subject>Optimization</subject><subject>Probability theory</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Streamflow forecasting</subject><subject>Variables</subject><issn>0920-4741</issn><issn>1573-1650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1rFEEQhhtRcI3-AU8Nnkerv3Z2jsmSRGFDwA9ybDo91bsdZqbH6h7i5k_4l21dwZuHoqB43rfgYeytgPcCoP2QhZDrrgEp6rQtNOIZWwnTqkasDTxnK-gkNLrV4iV7lfMDQI11sGI_L-Lk6MivCY_8Lg2B384ljvHJlZim5jPul8FRfMKeX_4ohCPyHTqa4rTnN84f4oT8jtw8I_FtWuahgo-xHHg5IL9ItBTHz4d9onobeUjEb9JUDsORf6ltbgxDeuRXidC7XGrpa_YiuCHjm7_7jH27uvy6_djsbq8_bc93jVeiK42RIvTovTbCiTWuwSuJBnQwTjtwvbuHoE0fVA8bswl-E4wCj-Cl1vfOb9QZe3fqnSl9XzAX-5AWmupLK3Unq03VqUrJE-Up5UwY7ExxrL6sAPtbvD2Jt1W8_SPeihpSp1Cu8LRH-lf9n9Qv_p-JYw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Qu, Jihong</creator><creator>Ren, Kun</creator><creator>Shi, Xiaoyu</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7472-439X</orcidid></search><sort><creationdate>20210201</creationdate><title>Binary Grey Wolf Optimization-Regularized Extreme Learning Machine Wrapper Coupled with the Boruta Algorithm for Monthly Streamflow Forecasting</title><author>Qu, Jihong ; Ren, Kun ; Shi, Xiaoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-521fdecc451a16e60c32e504f5a4a0adab0f45df3d0858fc8f530ce0c244bac83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Atmospheric Sciences</topic><topic>Bayesian analysis</topic><topic>Catchment area</topic><topic>Catchments</topic><topic>Civil Engineering</topic><topic>Criteria</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Forecasting</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Global climate</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Objective function</topic><topic>Optimization</topic><topic>Probability theory</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Streamflow forecasting</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Jihong</creatorcontrib><creatorcontrib>Ren, Kun</creatorcontrib><creatorcontrib>Shi, Xiaoyu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Jihong</au><au>Ren, Kun</au><au>Shi, Xiaoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binary Grey Wolf Optimization-Regularized Extreme Learning Machine Wrapper Coupled with the Boruta Algorithm for Monthly Streamflow Forecasting</atitle><jtitle>Water resources management</jtitle><stitle>Water Resour Manage</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>35</volume><issue>3</issue><spage>1029</spage><epage>1045</epage><pages>1029-1045</pages><issn>0920-4741</issn><eissn>1573-1650</eissn><abstract>Input variable selection plays a key role in data-driven streamflow forecasting models. In this study, we propose a two-stage wrapper model to drive one-month-ahead streamflow forecasting in the context of high-dimensional candidate input variables. Initially, the Boruta algorithm, a feature selection method, was applied to select all the relevant input variables for the streamflow series. Then, a novel binary grey wolf optimizer (BGWO)-regularized extreme learning machine (RELM) wrapper was derived. We carried out experiments on two US catchments with 132 candidate input variables, including local meteorological information, global climatic indices, and lags of the streamflow series. Furthermore, the sensitivities of the proposed model in terms of the optimal objective function were compared. The results indicate two important findings. First, the proposed model outperformed commonly used models in terms of four error evaluation criteria. Second, for the proposed model, the root mean square error is a more suitable criterion than the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) for the optimal objective function. These findings are of great reference value for developing ELM models for streamflow forecasting.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11269-021-02770-1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7472-439X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-4741 |
ispartof | Water resources management, 2021-02, Vol.35 (3), p.1029-1045 |
issn | 0920-4741 1573-1650 |
language | eng |
recordid | cdi_proquest_journals_2492126393 |
source | SpringerLink Journals |
subjects | Algorithms Artificial neural networks Atmospheric Sciences Bayesian analysis Catchment area Catchments Civil Engineering Criteria Earth and Environmental Science Earth Sciences Environment Forecasting Geotechnical Engineering & Applied Earth Sciences Global climate Hydrogeology Hydrology/Water Resources Learning algorithms Machine learning Mathematical models Objective function Optimization Probability theory Stream discharge Stream flow Streamflow forecasting Variables |
title | Binary Grey Wolf Optimization-Regularized Extreme Learning Machine Wrapper Coupled with the Boruta Algorithm for Monthly Streamflow Forecasting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binary%20Grey%20Wolf%20Optimization-Regularized%20Extreme%20Learning%20Machine%20Wrapper%20Coupled%20with%20the%20Boruta%20Algorithm%20for%20Monthly%20Streamflow%20Forecasting&rft.jtitle=Water%20resources%20management&rft.au=Qu,%20Jihong&rft.date=2021-02-01&rft.volume=35&rft.issue=3&rft.spage=1029&rft.epage=1045&rft.pages=1029-1045&rft.issn=0920-4741&rft.eissn=1573-1650&rft_id=info:doi/10.1007/s11269-021-02770-1&rft_dat=%3Cproquest_cross%3E2492126393%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492126393&rft_id=info:pmid/&rfr_iscdi=true |