Marginal Instability and the Efficiency of Ocean Mixing

The mixing efficiency of stratified turbulence in geophysical fluids has been the subject of considerable controversy. A simple parameterization, devised decades ago when empirical knowledge was scarce, has held up remarkably well. The parameterization rests on the assumption that the flux coefficie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical oceanography 2020-08, Vol.50 (8), p.2141-2150
1. Verfasser: Smyth, W. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2150
container_issue 8
container_start_page 2141
container_title Journal of physical oceanography
container_volume 50
creator Smyth, W. D.
description The mixing efficiency of stratified turbulence in geophysical fluids has been the subject of considerable controversy. A simple parameterization, devised decades ago when empirical knowledge was scarce, has held up remarkably well. The parameterization rests on the assumption that the flux coefficient Γ has the uniform value 0.2. This note provides a physical explanation for Γ = 0.2 in terms of the “marginal instability” property of forced stratified shear flows, and also sketches a path toward improving on that simple picture by examining cases where it fails.
doi_str_mv 10.1175/JPO-D-20-0083.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2492025407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492025407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-6863289243c23db4cf7d2ae375db3a232166931da873dd18bdd10f05a1cf3eda3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKtnrwHPad-82U12j9JWrbTUg55DNh81pe7WZAv237tFLzMMDMPwEHLPYcK5Kqevbxs2ZwgMoBITfkFGvDynoiovyQgAkQmp4Jrc5LwDAMmxHhG1NmkbW7Onyzb3pon72J-oaR3tPz1dhBBt9K090S7QjfWmpev4E9vtLbkKZp_93b-PycfT4n32wlab5-XsccWsULJnspICqxoLYVG4prBBOTReqNI1wqBALmUtuDOVEs7xqhkEApSG2yC8M2JMHv52D6n7Pvrc6113TMPfrLGoEbAsQA2t6V_Lpi7n5IM-pPhl0klz0Gc6eqCj5xpBn-loLn4Bu-tWSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492025407</pqid></control><display><type>article</type><title>Marginal Instability and the Efficiency of Ocean Mixing</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Smyth, W. D.</creator><creatorcontrib>Smyth, W. D.</creatorcontrib><description>The mixing efficiency of stratified turbulence in geophysical fluids has been the subject of considerable controversy. A simple parameterization, devised decades ago when empirical knowledge was scarce, has held up remarkably well. The parameterization rests on the assumption that the flux coefficient Γ has the uniform value 0.2. This note provides a physical explanation for Γ = 0.2 in terms of the “marginal instability” property of forced stratified shear flows, and also sketches a path toward improving on that simple picture by examining cases where it fails.</description><identifier>ISSN: 0022-3670</identifier><identifier>EISSN: 1520-0485</identifier><identifier>DOI: 10.1175/JPO-D-20-0083.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Approximation ; Efficiency ; Energy ; Estimates ; Fluid dynamics ; Fluid flow ; Fluids ; Geophysical fluids ; Gravity ; Ocean mixing ; Oceanic turbulence ; Parameterization ; Reynolds number ; Shear flow ; Sketches ; Turbulence ; Viscosity</subject><ispartof>Journal of physical oceanography, 2020-08, Vol.50 (8), p.2141-2150</ispartof><rights>Copyright American Meteorological Society 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-6863289243c23db4cf7d2ae375db3a232166931da873dd18bdd10f05a1cf3eda3</citedby><cites>FETCH-LOGICAL-c376t-6863289243c23db4cf7d2ae375db3a232166931da873dd18bdd10f05a1cf3eda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Smyth, W. D.</creatorcontrib><title>Marginal Instability and the Efficiency of Ocean Mixing</title><title>Journal of physical oceanography</title><description>The mixing efficiency of stratified turbulence in geophysical fluids has been the subject of considerable controversy. A simple parameterization, devised decades ago when empirical knowledge was scarce, has held up remarkably well. The parameterization rests on the assumption that the flux coefficient Γ has the uniform value 0.2. This note provides a physical explanation for Γ = 0.2 in terms of the “marginal instability” property of forced stratified shear flows, and also sketches a path toward improving on that simple picture by examining cases where it fails.</description><subject>Approximation</subject><subject>Efficiency</subject><subject>Energy</subject><subject>Estimates</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Geophysical fluids</subject><subject>Gravity</subject><subject>Ocean mixing</subject><subject>Oceanic turbulence</subject><subject>Parameterization</subject><subject>Reynolds number</subject><subject>Shear flow</subject><subject>Sketches</subject><subject>Turbulence</subject><subject>Viscosity</subject><issn>0022-3670</issn><issn>1520-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1LAzEYhIMoWKtnrwHPad-82U12j9JWrbTUg55DNh81pe7WZAv237tFLzMMDMPwEHLPYcK5Kqevbxs2ZwgMoBITfkFGvDynoiovyQgAkQmp4Jrc5LwDAMmxHhG1NmkbW7Onyzb3pon72J-oaR3tPz1dhBBt9K090S7QjfWmpev4E9vtLbkKZp_93b-PycfT4n32wlab5-XsccWsULJnspICqxoLYVG4prBBOTReqNI1wqBALmUtuDOVEs7xqhkEApSG2yC8M2JMHv52D6n7Pvrc6113TMPfrLGoEbAsQA2t6V_Lpi7n5IM-pPhl0klz0Gc6eqCj5xpBn-loLn4Bu-tWSQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Smyth, W. D.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20200801</creationdate><title>Marginal Instability and the Efficiency of Ocean Mixing</title><author>Smyth, W. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-6863289243c23db4cf7d2ae375db3a232166931da873dd18bdd10f05a1cf3eda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Efficiency</topic><topic>Energy</topic><topic>Estimates</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Geophysical fluids</topic><topic>Gravity</topic><topic>Ocean mixing</topic><topic>Oceanic turbulence</topic><topic>Parameterization</topic><topic>Reynolds number</topic><topic>Shear flow</topic><topic>Sketches</topic><topic>Turbulence</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smyth, W. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of physical oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smyth, W. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marginal Instability and the Efficiency of Ocean Mixing</atitle><jtitle>Journal of physical oceanography</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>50</volume><issue>8</issue><spage>2141</spage><epage>2150</epage><pages>2141-2150</pages><issn>0022-3670</issn><eissn>1520-0485</eissn><abstract>The mixing efficiency of stratified turbulence in geophysical fluids has been the subject of considerable controversy. A simple parameterization, devised decades ago when empirical knowledge was scarce, has held up remarkably well. The parameterization rests on the assumption that the flux coefficient Γ has the uniform value 0.2. This note provides a physical explanation for Γ = 0.2 in terms of the “marginal instability” property of forced stratified shear flows, and also sketches a path toward improving on that simple picture by examining cases where it fails.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JPO-D-20-0083.1</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3670
ispartof Journal of physical oceanography, 2020-08, Vol.50 (8), p.2141-2150
issn 0022-3670
1520-0485
language eng
recordid cdi_proquest_journals_2492025407
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Approximation
Efficiency
Energy
Estimates
Fluid dynamics
Fluid flow
Fluids
Geophysical fluids
Gravity
Ocean mixing
Oceanic turbulence
Parameterization
Reynolds number
Shear flow
Sketches
Turbulence
Viscosity
title Marginal Instability and the Efficiency of Ocean Mixing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marginal%20Instability%20and%20the%20Efficiency%20of%20Ocean%20Mixing&rft.jtitle=Journal%20of%20physical%20oceanography&rft.au=Smyth,%20W.%20D.&rft.date=2020-08-01&rft.volume=50&rft.issue=8&rft.spage=2141&rft.epage=2150&rft.pages=2141-2150&rft.issn=0022-3670&rft.eissn=1520-0485&rft_id=info:doi/10.1175/JPO-D-20-0083.1&rft_dat=%3Cproquest_cross%3E2492025407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492025407&rft_id=info:pmid/&rfr_iscdi=true