Marginal Instability and the Efficiency of Ocean Mixing
The mixing efficiency of stratified turbulence in geophysical fluids has been the subject of considerable controversy. A simple parameterization, devised decades ago when empirical knowledge was scarce, has held up remarkably well. The parameterization rests on the assumption that the flux coefficie...
Gespeichert in:
Veröffentlicht in: | Journal of physical oceanography 2020-08, Vol.50 (8), p.2141-2150 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2150 |
---|---|
container_issue | 8 |
container_start_page | 2141 |
container_title | Journal of physical oceanography |
container_volume | 50 |
creator | Smyth, W. D. |
description | The mixing efficiency of stratified turbulence in geophysical fluids has been the subject of considerable controversy. A simple parameterization, devised decades ago when empirical knowledge was scarce, has held up remarkably well. The parameterization rests on the assumption that the flux coefficient Γ has the uniform value 0.2. This note provides a physical explanation for Γ = 0.2 in terms of the “marginal instability” property of forced stratified shear flows, and also sketches a path toward improving on that simple picture by examining cases where it fails. |
doi_str_mv | 10.1175/JPO-D-20-0083.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2492025407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492025407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-6863289243c23db4cf7d2ae375db3a232166931da873dd18bdd10f05a1cf3eda3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKtnrwHPad-82U12j9JWrbTUg55DNh81pe7WZAv237tFLzMMDMPwEHLPYcK5Kqevbxs2ZwgMoBITfkFGvDynoiovyQgAkQmp4Jrc5LwDAMmxHhG1NmkbW7Onyzb3pon72J-oaR3tPz1dhBBt9K090S7QjfWmpev4E9vtLbkKZp_93b-PycfT4n32wlab5-XsccWsULJnspICqxoLYVG4prBBOTReqNI1wqBALmUtuDOVEs7xqhkEApSG2yC8M2JMHv52D6n7Pvrc6113TMPfrLGoEbAsQA2t6V_Lpi7n5IM-pPhl0klz0Gc6eqCj5xpBn-loLn4Bu-tWSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492025407</pqid></control><display><type>article</type><title>Marginal Instability and the Efficiency of Ocean Mixing</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Smyth, W. D.</creator><creatorcontrib>Smyth, W. D.</creatorcontrib><description>The mixing efficiency of stratified turbulence in geophysical fluids has been the subject of considerable controversy. A simple parameterization, devised decades ago when empirical knowledge was scarce, has held up remarkably well. The parameterization rests on the assumption that the flux coefficient Γ has the uniform value 0.2. This note provides a physical explanation for Γ = 0.2 in terms of the “marginal instability” property of forced stratified shear flows, and also sketches a path toward improving on that simple picture by examining cases where it fails.</description><identifier>ISSN: 0022-3670</identifier><identifier>EISSN: 1520-0485</identifier><identifier>DOI: 10.1175/JPO-D-20-0083.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Approximation ; Efficiency ; Energy ; Estimates ; Fluid dynamics ; Fluid flow ; Fluids ; Geophysical fluids ; Gravity ; Ocean mixing ; Oceanic turbulence ; Parameterization ; Reynolds number ; Shear flow ; Sketches ; Turbulence ; Viscosity</subject><ispartof>Journal of physical oceanography, 2020-08, Vol.50 (8), p.2141-2150</ispartof><rights>Copyright American Meteorological Society 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-6863289243c23db4cf7d2ae375db3a232166931da873dd18bdd10f05a1cf3eda3</citedby><cites>FETCH-LOGICAL-c376t-6863289243c23db4cf7d2ae375db3a232166931da873dd18bdd10f05a1cf3eda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Smyth, W. D.</creatorcontrib><title>Marginal Instability and the Efficiency of Ocean Mixing</title><title>Journal of physical oceanography</title><description>The mixing efficiency of stratified turbulence in geophysical fluids has been the subject of considerable controversy. A simple parameterization, devised decades ago when empirical knowledge was scarce, has held up remarkably well. The parameterization rests on the assumption that the flux coefficient Γ has the uniform value 0.2. This note provides a physical explanation for Γ = 0.2 in terms of the “marginal instability” property of forced stratified shear flows, and also sketches a path toward improving on that simple picture by examining cases where it fails.</description><subject>Approximation</subject><subject>Efficiency</subject><subject>Energy</subject><subject>Estimates</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Geophysical fluids</subject><subject>Gravity</subject><subject>Ocean mixing</subject><subject>Oceanic turbulence</subject><subject>Parameterization</subject><subject>Reynolds number</subject><subject>Shear flow</subject><subject>Sketches</subject><subject>Turbulence</subject><subject>Viscosity</subject><issn>0022-3670</issn><issn>1520-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1LAzEYhIMoWKtnrwHPad-82U12j9JWrbTUg55DNh81pe7WZAv237tFLzMMDMPwEHLPYcK5Kqevbxs2ZwgMoBITfkFGvDynoiovyQgAkQmp4Jrc5LwDAMmxHhG1NmkbW7Onyzb3pon72J-oaR3tPz1dhBBt9K090S7QjfWmpev4E9vtLbkKZp_93b-PycfT4n32wlab5-XsccWsULJnspICqxoLYVG4prBBOTReqNI1wqBALmUtuDOVEs7xqhkEApSG2yC8M2JMHv52D6n7Pvrc6113TMPfrLGoEbAsQA2t6V_Lpi7n5IM-pPhl0klz0Gc6eqCj5xpBn-loLn4Bu-tWSQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Smyth, W. D.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20200801</creationdate><title>Marginal Instability and the Efficiency of Ocean Mixing</title><author>Smyth, W. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-6863289243c23db4cf7d2ae375db3a232166931da873dd18bdd10f05a1cf3eda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Efficiency</topic><topic>Energy</topic><topic>Estimates</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Geophysical fluids</topic><topic>Gravity</topic><topic>Ocean mixing</topic><topic>Oceanic turbulence</topic><topic>Parameterization</topic><topic>Reynolds number</topic><topic>Shear flow</topic><topic>Sketches</topic><topic>Turbulence</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smyth, W. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of physical oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smyth, W. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marginal Instability and the Efficiency of Ocean Mixing</atitle><jtitle>Journal of physical oceanography</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>50</volume><issue>8</issue><spage>2141</spage><epage>2150</epage><pages>2141-2150</pages><issn>0022-3670</issn><eissn>1520-0485</eissn><abstract>The mixing efficiency of stratified turbulence in geophysical fluids has been the subject of considerable controversy. A simple parameterization, devised decades ago when empirical knowledge was scarce, has held up remarkably well. The parameterization rests on the assumption that the flux coefficient Γ has the uniform value 0.2. This note provides a physical explanation for Γ = 0.2 in terms of the “marginal instability” property of forced stratified shear flows, and also sketches a path toward improving on that simple picture by examining cases where it fails.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JPO-D-20-0083.1</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3670 |
ispartof | Journal of physical oceanography, 2020-08, Vol.50 (8), p.2141-2150 |
issn | 0022-3670 1520-0485 |
language | eng |
recordid | cdi_proquest_journals_2492025407 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Approximation Efficiency Energy Estimates Fluid dynamics Fluid flow Fluids Geophysical fluids Gravity Ocean mixing Oceanic turbulence Parameterization Reynolds number Shear flow Sketches Turbulence Viscosity |
title | Marginal Instability and the Efficiency of Ocean Mixing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marginal%20Instability%20and%20the%20Efficiency%20of%20Ocean%20Mixing&rft.jtitle=Journal%20of%20physical%20oceanography&rft.au=Smyth,%20W.%20D.&rft.date=2020-08-01&rft.volume=50&rft.issue=8&rft.spage=2141&rft.epage=2150&rft.pages=2141-2150&rft.issn=0022-3670&rft.eissn=1520-0485&rft_id=info:doi/10.1175/JPO-D-20-0083.1&rft_dat=%3Cproquest_cross%3E2492025407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492025407&rft_id=info:pmid/&rfr_iscdi=true |