Artificial Intelligence, Real-World Automation and the Safety of Medicines

Despite huge technological advances in the capabilities to capture, store, link and analyse data electronically, there has been some but limited impact on routine pharmacovigilance. We discuss emerging research in the use of artificial intelligence, machine learning and automation across the pharmac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug safety 2021-02, Vol.44 (2), p.125-132
Hauptverfasser: Bate, Andrew, Hobbiger, Steve F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 132
container_issue 2
container_start_page 125
container_title Drug safety
container_volume 44
creator Bate, Andrew
Hobbiger, Steve F.
description Despite huge technological advances in the capabilities to capture, store, link and analyse data electronically, there has been some but limited impact on routine pharmacovigilance. We discuss emerging research in the use of artificial intelligence, machine learning and automation across the pharmacovigilance lifecycle including pre-licensure. Reasons are provided on why adoption is challenging and we also provide a perspective on changes needed to accelerate adoption, and thereby improve patient safety. Last, we make clear that while technologies could be superimposed on existing pharmacovigilance processes for incremental improvements, these great societal advances in data and technology also provide us with a timely opportunity to reconsider everything we do in pharmacovigilance operations to maximise the benefit of these advances.
doi_str_mv 10.1007/s40264-020-01001-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491985252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491985252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-c2a82a4789489fca046b11feae8edb4aa532990170334586b6871eac7341bba93</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAyxQJLYYPLYT28uq4lFUhMRDLC0nmZRUaVLsdNG_x9ACO1YjzZx7RzqEnAK7BMbUVZCMZ5IyziiLC6BqjwwBlKFgJN8nQwYgaWogG5CjEBaMMc0zfUgGQsRkJmFI7se-r6u6qF2TTNsem6aeY1vgRfKErqFvnW_KZLzuu6Xr665NXFsm_Tsmz67CfpN0VfKAZYy3GI7JQeWagCe7OSKvN9cvkzs6e7ydTsYzWgiV9rTgTnMnlTZSm6pwTGY5QIUONZa5dC4V3BgGigkhU53lmVaArlBCQp47I0bkfNu78t3HGkNvF93at_Gl5dKA0SlPeaT4lip8F4LHyq58vXR-Y4HZL312q89GffZbn1UxdLarXudLLH8jP74iILZAiKd2jv7v9z-1n6HLeRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491985252</pqid></control><display><type>article</type><title>Artificial Intelligence, Real-World Automation and the Safety of Medicines</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bate, Andrew ; Hobbiger, Steve F.</creator><creatorcontrib>Bate, Andrew ; Hobbiger, Steve F.</creatorcontrib><description>Despite huge technological advances in the capabilities to capture, store, link and analyse data electronically, there has been some but limited impact on routine pharmacovigilance. We discuss emerging research in the use of artificial intelligence, machine learning and automation across the pharmacovigilance lifecycle including pre-licensure. Reasons are provided on why adoption is challenging and we also provide a perspective on changes needed to accelerate adoption, and thereby improve patient safety. Last, we make clear that while technologies could be superimposed on existing pharmacovigilance processes for incremental improvements, these great societal advances in data and technology also provide us with a timely opportunity to reconsider everything we do in pharmacovigilance operations to maximise the benefit of these advances.</description><identifier>ISSN: 0114-5916</identifier><identifier>EISSN: 1179-1942</identifier><identifier>DOI: 10.1007/s40264-020-01001-7</identifier><identifier>PMID: 33026641</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Artificial Intelligence ; Automation ; Breast cancer ; Current Opinion ; Drug Safety and Pharmacovigilance ; Humans ; Learning algorithms ; Life cycle analysis ; Machine learning ; Mammography ; Medicine ; Medicine &amp; Public Health ; Neural networks ; Patient safety ; Pharmacology ; Pharmacology/Toxicology ; Pharmacovigilance ; Safety</subject><ispartof>Drug safety, 2021-02, Vol.44 (2), p.125-132</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Copyright Springer Nature B.V. Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-c2a82a4789489fca046b11feae8edb4aa532990170334586b6871eac7341bba93</citedby><cites>FETCH-LOGICAL-c375t-c2a82a4789489fca046b11feae8edb4aa532990170334586b6871eac7341bba93</cites><orcidid>0000-0003-3151-3653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40264-020-01001-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40264-020-01001-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33026641$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bate, Andrew</creatorcontrib><creatorcontrib>Hobbiger, Steve F.</creatorcontrib><title>Artificial Intelligence, Real-World Automation and the Safety of Medicines</title><title>Drug safety</title><addtitle>Drug Saf</addtitle><addtitle>Drug Saf</addtitle><description>Despite huge technological advances in the capabilities to capture, store, link and analyse data electronically, there has been some but limited impact on routine pharmacovigilance. We discuss emerging research in the use of artificial intelligence, machine learning and automation across the pharmacovigilance lifecycle including pre-licensure. Reasons are provided on why adoption is challenging and we also provide a perspective on changes needed to accelerate adoption, and thereby improve patient safety. Last, we make clear that while technologies could be superimposed on existing pharmacovigilance processes for incremental improvements, these great societal advances in data and technology also provide us with a timely opportunity to reconsider everything we do in pharmacovigilance operations to maximise the benefit of these advances.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Breast cancer</subject><subject>Current Opinion</subject><subject>Drug Safety and Pharmacovigilance</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Life cycle analysis</subject><subject>Machine learning</subject><subject>Mammography</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neural networks</subject><subject>Patient safety</subject><subject>Pharmacology</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacovigilance</subject><subject>Safety</subject><issn>0114-5916</issn><issn>1179-1942</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAyxQJLYYPLYT28uq4lFUhMRDLC0nmZRUaVLsdNG_x9ACO1YjzZx7RzqEnAK7BMbUVZCMZ5IyziiLC6BqjwwBlKFgJN8nQwYgaWogG5CjEBaMMc0zfUgGQsRkJmFI7se-r6u6qF2TTNsem6aeY1vgRfKErqFvnW_KZLzuu6Xr665NXFsm_Tsmz67CfpN0VfKAZYy3GI7JQeWagCe7OSKvN9cvkzs6e7ydTsYzWgiV9rTgTnMnlTZSm6pwTGY5QIUONZa5dC4V3BgGigkhU53lmVaArlBCQp47I0bkfNu78t3HGkNvF93at_Gl5dKA0SlPeaT4lip8F4LHyq58vXR-Y4HZL312q89GffZbn1UxdLarXudLLH8jP74iILZAiKd2jv7v9z-1n6HLeRU</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Bate, Andrew</creator><creator>Hobbiger, Steve F.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7RV</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-3151-3653</orcidid></search><sort><creationdate>20210201</creationdate><title>Artificial Intelligence, Real-World Automation and the Safety of Medicines</title><author>Bate, Andrew ; Hobbiger, Steve F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-c2a82a4789489fca046b11feae8edb4aa532990170334586b6871eac7341bba93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Breast cancer</topic><topic>Current Opinion</topic><topic>Drug Safety and Pharmacovigilance</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Life cycle analysis</topic><topic>Machine learning</topic><topic>Mammography</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neural networks</topic><topic>Patient safety</topic><topic>Pharmacology</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacovigilance</topic><topic>Safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bate, Andrew</creatorcontrib><creatorcontrib>Hobbiger, Steve F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Drug safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bate, Andrew</au><au>Hobbiger, Steve F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence, Real-World Automation and the Safety of Medicines</atitle><jtitle>Drug safety</jtitle><stitle>Drug Saf</stitle><addtitle>Drug Saf</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>44</volume><issue>2</issue><spage>125</spage><epage>132</epage><pages>125-132</pages><issn>0114-5916</issn><eissn>1179-1942</eissn><abstract>Despite huge technological advances in the capabilities to capture, store, link and analyse data electronically, there has been some but limited impact on routine pharmacovigilance. We discuss emerging research in the use of artificial intelligence, machine learning and automation across the pharmacovigilance lifecycle including pre-licensure. Reasons are provided on why adoption is challenging and we also provide a perspective on changes needed to accelerate adoption, and thereby improve patient safety. Last, we make clear that while technologies could be superimposed on existing pharmacovigilance processes for incremental improvements, these great societal advances in data and technology also provide us with a timely opportunity to reconsider everything we do in pharmacovigilance operations to maximise the benefit of these advances.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>33026641</pmid><doi>10.1007/s40264-020-01001-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3151-3653</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0114-5916
ispartof Drug safety, 2021-02, Vol.44 (2), p.125-132
issn 0114-5916
1179-1942
language eng
recordid cdi_proquest_journals_2491985252
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial Intelligence
Automation
Breast cancer
Current Opinion
Drug Safety and Pharmacovigilance
Humans
Learning algorithms
Life cycle analysis
Machine learning
Mammography
Medicine
Medicine & Public Health
Neural networks
Patient safety
Pharmacology
Pharmacology/Toxicology
Pharmacovigilance
Safety
title Artificial Intelligence, Real-World Automation and the Safety of Medicines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence,%20Real-World%20Automation%20and%20the%20Safety%20of%20Medicines&rft.jtitle=Drug%20safety&rft.au=Bate,%20Andrew&rft.date=2021-02-01&rft.volume=44&rft.issue=2&rft.spage=125&rft.epage=132&rft.pages=125-132&rft.issn=0114-5916&rft.eissn=1179-1942&rft_id=info:doi/10.1007/s40264-020-01001-7&rft_dat=%3Cproquest_cross%3E2491985252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491985252&rft_id=info:pmid/33026641&rfr_iscdi=true