Artificial Intelligence, Real-World Automation and the Safety of Medicines
Despite huge technological advances in the capabilities to capture, store, link and analyse data electronically, there has been some but limited impact on routine pharmacovigilance. We discuss emerging research in the use of artificial intelligence, machine learning and automation across the pharmac...
Gespeichert in:
Veröffentlicht in: | Drug safety 2021-02, Vol.44 (2), p.125-132 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 132 |
---|---|
container_issue | 2 |
container_start_page | 125 |
container_title | Drug safety |
container_volume | 44 |
creator | Bate, Andrew Hobbiger, Steve F. |
description | Despite huge technological advances in the capabilities to capture, store, link and analyse data electronically, there has been some but limited impact on routine pharmacovigilance. We discuss emerging research in the use of artificial intelligence, machine learning and automation across the pharmacovigilance lifecycle including pre-licensure. Reasons are provided on why adoption is challenging and we also provide a perspective on changes needed to accelerate adoption, and thereby improve patient safety. Last, we make clear that while technologies could be superimposed on existing pharmacovigilance processes for incremental improvements, these great societal advances in data and technology also provide us with a timely opportunity to reconsider everything we do in pharmacovigilance operations to maximise the benefit of these advances. |
doi_str_mv | 10.1007/s40264-020-01001-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491985252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491985252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-c2a82a4789489fca046b11feae8edb4aa532990170334586b6871eac7341bba93</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAyxQJLYYPLYT28uq4lFUhMRDLC0nmZRUaVLsdNG_x9ACO1YjzZx7RzqEnAK7BMbUVZCMZ5IyziiLC6BqjwwBlKFgJN8nQwYgaWogG5CjEBaMMc0zfUgGQsRkJmFI7se-r6u6qF2TTNsem6aeY1vgRfKErqFvnW_KZLzuu6Xr665NXFsm_Tsmz67CfpN0VfKAZYy3GI7JQeWagCe7OSKvN9cvkzs6e7ydTsYzWgiV9rTgTnMnlTZSm6pwTGY5QIUONZa5dC4V3BgGigkhU53lmVaArlBCQp47I0bkfNu78t3HGkNvF93at_Gl5dKA0SlPeaT4lip8F4LHyq58vXR-Y4HZL312q89GffZbn1UxdLarXudLLH8jP74iILZAiKd2jv7v9z-1n6HLeRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491985252</pqid></control><display><type>article</type><title>Artificial Intelligence, Real-World Automation and the Safety of Medicines</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bate, Andrew ; Hobbiger, Steve F.</creator><creatorcontrib>Bate, Andrew ; Hobbiger, Steve F.</creatorcontrib><description>Despite huge technological advances in the capabilities to capture, store, link and analyse data electronically, there has been some but limited impact on routine pharmacovigilance. We discuss emerging research in the use of artificial intelligence, machine learning and automation across the pharmacovigilance lifecycle including pre-licensure. Reasons are provided on why adoption is challenging and we also provide a perspective on changes needed to accelerate adoption, and thereby improve patient safety. Last, we make clear that while technologies could be superimposed on existing pharmacovigilance processes for incremental improvements, these great societal advances in data and technology also provide us with a timely opportunity to reconsider everything we do in pharmacovigilance operations to maximise the benefit of these advances.</description><identifier>ISSN: 0114-5916</identifier><identifier>EISSN: 1179-1942</identifier><identifier>DOI: 10.1007/s40264-020-01001-7</identifier><identifier>PMID: 33026641</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Artificial Intelligence ; Automation ; Breast cancer ; Current Opinion ; Drug Safety and Pharmacovigilance ; Humans ; Learning algorithms ; Life cycle analysis ; Machine learning ; Mammography ; Medicine ; Medicine & Public Health ; Neural networks ; Patient safety ; Pharmacology ; Pharmacology/Toxicology ; Pharmacovigilance ; Safety</subject><ispartof>Drug safety, 2021-02, Vol.44 (2), p.125-132</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Copyright Springer Nature B.V. Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-c2a82a4789489fca046b11feae8edb4aa532990170334586b6871eac7341bba93</citedby><cites>FETCH-LOGICAL-c375t-c2a82a4789489fca046b11feae8edb4aa532990170334586b6871eac7341bba93</cites><orcidid>0000-0003-3151-3653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40264-020-01001-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40264-020-01001-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33026641$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bate, Andrew</creatorcontrib><creatorcontrib>Hobbiger, Steve F.</creatorcontrib><title>Artificial Intelligence, Real-World Automation and the Safety of Medicines</title><title>Drug safety</title><addtitle>Drug Saf</addtitle><addtitle>Drug Saf</addtitle><description>Despite huge technological advances in the capabilities to capture, store, link and analyse data electronically, there has been some but limited impact on routine pharmacovigilance. We discuss emerging research in the use of artificial intelligence, machine learning and automation across the pharmacovigilance lifecycle including pre-licensure. Reasons are provided on why adoption is challenging and we also provide a perspective on changes needed to accelerate adoption, and thereby improve patient safety. Last, we make clear that while technologies could be superimposed on existing pharmacovigilance processes for incremental improvements, these great societal advances in data and technology also provide us with a timely opportunity to reconsider everything we do in pharmacovigilance operations to maximise the benefit of these advances.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Breast cancer</subject><subject>Current Opinion</subject><subject>Drug Safety and Pharmacovigilance</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Life cycle analysis</subject><subject>Machine learning</subject><subject>Mammography</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neural networks</subject><subject>Patient safety</subject><subject>Pharmacology</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacovigilance</subject><subject>Safety</subject><issn>0114-5916</issn><issn>1179-1942</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAyxQJLYYPLYT28uq4lFUhMRDLC0nmZRUaVLsdNG_x9ACO1YjzZx7RzqEnAK7BMbUVZCMZ5IyziiLC6BqjwwBlKFgJN8nQwYgaWogG5CjEBaMMc0zfUgGQsRkJmFI7se-r6u6qF2TTNsem6aeY1vgRfKErqFvnW_KZLzuu6Xr665NXFsm_Tsmz67CfpN0VfKAZYy3GI7JQeWagCe7OSKvN9cvkzs6e7ydTsYzWgiV9rTgTnMnlTZSm6pwTGY5QIUONZa5dC4V3BgGigkhU53lmVaArlBCQp47I0bkfNu78t3HGkNvF93at_Gl5dKA0SlPeaT4lip8F4LHyq58vXR-Y4HZL312q89GffZbn1UxdLarXudLLH8jP74iILZAiKd2jv7v9z-1n6HLeRU</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Bate, Andrew</creator><creator>Hobbiger, Steve F.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7RV</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-3151-3653</orcidid></search><sort><creationdate>20210201</creationdate><title>Artificial Intelligence, Real-World Automation and the Safety of Medicines</title><author>Bate, Andrew ; Hobbiger, Steve F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-c2a82a4789489fca046b11feae8edb4aa532990170334586b6871eac7341bba93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Breast cancer</topic><topic>Current Opinion</topic><topic>Drug Safety and Pharmacovigilance</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Life cycle analysis</topic><topic>Machine learning</topic><topic>Mammography</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neural networks</topic><topic>Patient safety</topic><topic>Pharmacology</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacovigilance</topic><topic>Safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bate, Andrew</creatorcontrib><creatorcontrib>Hobbiger, Steve F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Nursing & Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Drug safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bate, Andrew</au><au>Hobbiger, Steve F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence, Real-World Automation and the Safety of Medicines</atitle><jtitle>Drug safety</jtitle><stitle>Drug Saf</stitle><addtitle>Drug Saf</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>44</volume><issue>2</issue><spage>125</spage><epage>132</epage><pages>125-132</pages><issn>0114-5916</issn><eissn>1179-1942</eissn><abstract>Despite huge technological advances in the capabilities to capture, store, link and analyse data electronically, there has been some but limited impact on routine pharmacovigilance. We discuss emerging research in the use of artificial intelligence, machine learning and automation across the pharmacovigilance lifecycle including pre-licensure. Reasons are provided on why adoption is challenging and we also provide a perspective on changes needed to accelerate adoption, and thereby improve patient safety. Last, we make clear that while technologies could be superimposed on existing pharmacovigilance processes for incremental improvements, these great societal advances in data and technology also provide us with a timely opportunity to reconsider everything we do in pharmacovigilance operations to maximise the benefit of these advances.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>33026641</pmid><doi>10.1007/s40264-020-01001-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3151-3653</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0114-5916 |
ispartof | Drug safety, 2021-02, Vol.44 (2), p.125-132 |
issn | 0114-5916 1179-1942 |
language | eng |
recordid | cdi_proquest_journals_2491985252 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial Intelligence Automation Breast cancer Current Opinion Drug Safety and Pharmacovigilance Humans Learning algorithms Life cycle analysis Machine learning Mammography Medicine Medicine & Public Health Neural networks Patient safety Pharmacology Pharmacology/Toxicology Pharmacovigilance Safety |
title | Artificial Intelligence, Real-World Automation and the Safety of Medicines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence,%20Real-World%20Automation%20and%20the%20Safety%20of%20Medicines&rft.jtitle=Drug%20safety&rft.au=Bate,%20Andrew&rft.date=2021-02-01&rft.volume=44&rft.issue=2&rft.spage=125&rft.epage=132&rft.pages=125-132&rft.issn=0114-5916&rft.eissn=1179-1942&rft_id=info:doi/10.1007/s40264-020-01001-7&rft_dat=%3Cproquest_cross%3E2491985252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491985252&rft_id=info:pmid/33026641&rfr_iscdi=true |