Impact of block sequence on the phase morphology of multiblock copolymers obtained by high-throughput robotic synthesis

A library of well-defined MBCs composed of two different hydrophobic, crystallizable blocks providing domains with well-separated melting temperatures (Tms) were synthesized from the same type of precursor building blocks as strictly alternating (MBCsalt) or random (MBCsran) MBCs and compared. [Disp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European polymer journal 2021-01, Vol.143, p.110207, Article 110207
Hauptverfasser: Behl, Marc, Balk, Maria, Lützow, Karola, Lendlein, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A library of well-defined MBCs composed of two different hydrophobic, crystallizable blocks providing domains with well-separated melting temperatures (Tms) were synthesized from the same type of precursor building blocks as strictly alternating (MBCsalt) or random (MBCsran) MBCs and compared. [Display omitted] •Synthesis of multiblock copolymers using automated robotic synthesizer.•Multiblock copolymers with random and strictly alternating sequence of segments.•Tms associated to melting of OCL and OTHF domains were almost not affected by sequence of segments.•Elongation at break in MBCsalt was reduced almost by a factor of 2 compared to MBCsran. The chemical nature, the number length of integrated building blocks, as well as their sequence structure impact the phase morphology of multiblock copolymers (MBC) consisting of two non-miscible block types. We hypothesized that a strictly alternating sequence should favour phase segregation and in this way the elastic properties. A library of well-defined MBCs composed of two different hydrophobic, semi-crystalline blocks providing domains with well-separated melting temperatures (Tms) were synthesized from the same type of precursor building blocks as strictly alternating (MBCsalt) or random (MBCsran) MBCs and compared. Three different series of MBCsalt or MBCsran were synthesized by high-throughput synthesis by coupling oligo(ε-caprolactone) (OCL) of different molecular weights (2, 4, and 8 kDa) with oligotetrahydrofuran (OTHF, 2.9 kDa) via Steglich esterification in which the molar ratio of the reaction partners was slightly adjusted. Maximum of weight average molecular weight (Mw) were 65,000 g∙mol−1, 165,000 g∙mol−1, and 168,000 g∙mol−1 for MBCsalt and 80,500 g∙mol−1, 100,000 g∙mol−1, and 147,600 g∙mol−1 for MBCsran. When Mw increased, a decrease of both Tms associated to the melting of the OCL and OTHF domains was observed for all MBCs. Tm (OTHF) of MBCsran was always higher than Tm (OTHF) of MBCsalt, which was attributed to a better phase segregation. In addition, the elongation at break of MBCsalt was almost half as high when compared to MBCsran. In this way this study elucidates role of the block length and sequence structure in MBCs and enables a quantitative discussion of the structure-function relationship when two semi-crystalline block segments are utilized for the design of block copolymers.
ISSN:0014-3057
1873-1945
DOI:10.1016/j.eurpolymj.2020.110207