A Deep-Learning Model with Learnable Group Convolution and Deep Supervision for Brain Tumor Segmentation

The segmentation of brain tumors in medical images is a crucial step of clinical treatment. Manual segmentation is time consuming and labor intensive, and existing automatic segmentation methods suffer from issues such as numerous parameters and low precision. To resolve these issues, this study pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021-02, Vol.2021, p.1-11
Hauptverfasser: Liu, Hengxin, Li, Qiang, Wang, I-Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2021
creator Liu, Hengxin
Li, Qiang
Wang, I-Chi
description The segmentation of brain tumors in medical images is a crucial step of clinical treatment. Manual segmentation is time consuming and labor intensive, and existing automatic segmentation methods suffer from issues such as numerous parameters and low precision. To resolve these issues, this study proposes a learnable group convolution-based segmentation method that replaces convolution in the feature extraction stage with learnable group convolution, thereby reducing the number of convolutional network parameters and enhancing communication between convolution groups. To improve utilization of the feature maps, we added a skip connection structure between learnable group convolution modules, which increased segmentation precision. We used deep supervision to combine output images in the network output stage to reduce overfitting and enhance the recognition capabilities of the network. We tested the proposed algorithm model using the open BraTS 2018 dataset. The experiment results revealed that the proposed model is superior to 3D U-Net and DMFNet and has better segmentation results for tumor cores than No New-Net and NVDLMED, the winning methods in the BraTS 2018 challenge. The segmentation precision of the proposed method with regard to whole tumors, enhancing tumors, and tumor cores was 90.25%, 80.36%, and 86.20%. Furthermore, the proposed method uses fewer parameters and a less complex model.
doi_str_mv 10.1155/2021/6661083
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491750700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491750700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-1dc7ec188e85fff09e148860a07840e98c1af6d7c5fc0d8251fdfc581d9432d53</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4wEscYRQbxInzrG0UJCKOLRI3CLjn9ZVagc7acXbk7Q9c9rR6JuRdhC6BfIIQOkoJjGMsiwDwpIzNACaJRGFND_vNInTCOLk6xJdhbAhHUmBDdB6jKdK1dFccW-NXeF3J1WF96ZZ44PHvyuFZ961NZ44u3NV2xhnMbfyEMSLtlZ-Z0Jvaufxk-fG4mW77fRCrbbKNrxPXKMLzaugbk53iD5fnpeT12j-MXubjOeRSJK8iUCKXAlgTDGqtSaFgpSxjHCSs5SoggngOpO5oFoQyWIKWmpBGcgiTWJJkyG6O_bW3v20KjTlxrXdG1Uo47SAnJKckI56OFLCuxC80mXtzZb73xJI2W9Z9luWpy07_P6Ir42VfG_-p_8Asg9zmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491750700</pqid></control><display><type>article</type><title>A Deep-Learning Model with Learnable Group Convolution and Deep Supervision for Brain Tumor Segmentation</title><source>Wiley-Blackwell Open Access Titles</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Hengxin ; Li, Qiang ; Wang, I-Chi</creator><contributor>Tan, Kim-Hua</contributor><creatorcontrib>Liu, Hengxin ; Li, Qiang ; Wang, I-Chi ; Tan, Kim-Hua</creatorcontrib><description>The segmentation of brain tumors in medical images is a crucial step of clinical treatment. Manual segmentation is time consuming and labor intensive, and existing automatic segmentation methods suffer from issues such as numerous parameters and low precision. To resolve these issues, this study proposes a learnable group convolution-based segmentation method that replaces convolution in the feature extraction stage with learnable group convolution, thereby reducing the number of convolutional network parameters and enhancing communication between convolution groups. To improve utilization of the feature maps, we added a skip connection structure between learnable group convolution modules, which increased segmentation precision. We used deep supervision to combine output images in the network output stage to reduce overfitting and enhance the recognition capabilities of the network. We tested the proposed algorithm model using the open BraTS 2018 dataset. The experiment results revealed that the proposed model is superior to 3D U-Net and DMFNet and has better segmentation results for tumor cores than No New-Net and NVDLMED, the winning methods in the BraTS 2018 challenge. The segmentation precision of the proposed method with regard to whole tumors, enhancing tumors, and tumor cores was 90.25%, 80.36%, and 86.20%. Furthermore, the proposed method uses fewer parameters and a less complex model.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/6661083</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Brain ; Brain cancer ; Communication ; Convolution ; Deep learning ; Engineering ; Feature extraction ; Feature maps ; Image enhancement ; Image segmentation ; Machine learning ; Magnetic resonance imaging ; Mathematical models ; Medical imaging ; Neural networks ; Parameters ; Supervision ; Three dimensional models ; Tumors</subject><ispartof>Mathematical problems in engineering, 2021-02, Vol.2021, p.1-11</ispartof><rights>Copyright © 2021 Hengxin Liu et al.</rights><rights>Copyright © 2021 Hengxin Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-1dc7ec188e85fff09e148860a07840e98c1af6d7c5fc0d8251fdfc581d9432d53</citedby><cites>FETCH-LOGICAL-c337t-1dc7ec188e85fff09e148860a07840e98c1af6d7c5fc0d8251fdfc581d9432d53</cites><orcidid>0000-0002-6763-9170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Tan, Kim-Hua</contributor><creatorcontrib>Liu, Hengxin</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Wang, I-Chi</creatorcontrib><title>A Deep-Learning Model with Learnable Group Convolution and Deep Supervision for Brain Tumor Segmentation</title><title>Mathematical problems in engineering</title><description>The segmentation of brain tumors in medical images is a crucial step of clinical treatment. Manual segmentation is time consuming and labor intensive, and existing automatic segmentation methods suffer from issues such as numerous parameters and low precision. To resolve these issues, this study proposes a learnable group convolution-based segmentation method that replaces convolution in the feature extraction stage with learnable group convolution, thereby reducing the number of convolutional network parameters and enhancing communication between convolution groups. To improve utilization of the feature maps, we added a skip connection structure between learnable group convolution modules, which increased segmentation precision. We used deep supervision to combine output images in the network output stage to reduce overfitting and enhance the recognition capabilities of the network. We tested the proposed algorithm model using the open BraTS 2018 dataset. The experiment results revealed that the proposed model is superior to 3D U-Net and DMFNet and has better segmentation results for tumor cores than No New-Net and NVDLMED, the winning methods in the BraTS 2018 challenge. The segmentation precision of the proposed method with regard to whole tumors, enhancing tumors, and tumor cores was 90.25%, 80.36%, and 86.20%. Furthermore, the proposed method uses fewer parameters and a less complex model.</description><subject>Algorithms</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Communication</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Supervision</subject><subject>Three dimensional models</subject><subject>Tumors</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kM1OwzAQhC0EEqVw4wEscYRQbxInzrG0UJCKOLRI3CLjn9ZVagc7acXbk7Q9c9rR6JuRdhC6BfIIQOkoJjGMsiwDwpIzNACaJRGFND_vNInTCOLk6xJdhbAhHUmBDdB6jKdK1dFccW-NXeF3J1WF96ZZ44PHvyuFZ961NZ44u3NV2xhnMbfyEMSLtlZ-Z0Jvaufxk-fG4mW77fRCrbbKNrxPXKMLzaugbk53iD5fnpeT12j-MXubjOeRSJK8iUCKXAlgTDGqtSaFgpSxjHCSs5SoggngOpO5oFoQyWIKWmpBGcgiTWJJkyG6O_bW3v20KjTlxrXdG1Uo47SAnJKckI56OFLCuxC80mXtzZb73xJI2W9Z9luWpy07_P6Ir42VfG_-p_8Asg9zmA</recordid><startdate>20210210</startdate><enddate>20210210</enddate><creator>Liu, Hengxin</creator><creator>Li, Qiang</creator><creator>Wang, I-Chi</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-6763-9170</orcidid></search><sort><creationdate>20210210</creationdate><title>A Deep-Learning Model with Learnable Group Convolution and Deep Supervision for Brain Tumor Segmentation</title><author>Liu, Hengxin ; Li, Qiang ; Wang, I-Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-1dc7ec188e85fff09e148860a07840e98c1af6d7c5fc0d8251fdfc581d9432d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Communication</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Supervision</topic><topic>Three dimensional models</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hengxin</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Wang, I-Chi</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hengxin</au><au>Li, Qiang</au><au>Wang, I-Chi</au><au>Tan, Kim-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep-Learning Model with Learnable Group Convolution and Deep Supervision for Brain Tumor Segmentation</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021-02-10</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The segmentation of brain tumors in medical images is a crucial step of clinical treatment. Manual segmentation is time consuming and labor intensive, and existing automatic segmentation methods suffer from issues such as numerous parameters and low precision. To resolve these issues, this study proposes a learnable group convolution-based segmentation method that replaces convolution in the feature extraction stage with learnable group convolution, thereby reducing the number of convolutional network parameters and enhancing communication between convolution groups. To improve utilization of the feature maps, we added a skip connection structure between learnable group convolution modules, which increased segmentation precision. We used deep supervision to combine output images in the network output stage to reduce overfitting and enhance the recognition capabilities of the network. We tested the proposed algorithm model using the open BraTS 2018 dataset. The experiment results revealed that the proposed model is superior to 3D U-Net and DMFNet and has better segmentation results for tumor cores than No New-Net and NVDLMED, the winning methods in the BraTS 2018 challenge. The segmentation precision of the proposed method with regard to whole tumors, enhancing tumors, and tumor cores was 90.25%, 80.36%, and 86.20%. Furthermore, the proposed method uses fewer parameters and a less complex model.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/6661083</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6763-9170</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2021-02, Vol.2021, p.1-11
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2491750700
source Wiley-Blackwell Open Access Titles; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Brain
Brain cancer
Communication
Convolution
Deep learning
Engineering
Feature extraction
Feature maps
Image enhancement
Image segmentation
Machine learning
Magnetic resonance imaging
Mathematical models
Medical imaging
Neural networks
Parameters
Supervision
Three dimensional models
Tumors
title A Deep-Learning Model with Learnable Group Convolution and Deep Supervision for Brain Tumor Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T22%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep-Learning%20Model%20with%20Learnable%20Group%20Convolution%20and%20Deep%20Supervision%20for%20Brain%20Tumor%20Segmentation&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Liu,%20Hengxin&rft.date=2021-02-10&rft.volume=2021&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/6661083&rft_dat=%3Cproquest_cross%3E2491750700%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491750700&rft_id=info:pmid/&rfr_iscdi=true