A Deep-Learning Model with Learnable Group Convolution and Deep Supervision for Brain Tumor Segmentation
The segmentation of brain tumors in medical images is a crucial step of clinical treatment. Manual segmentation is time consuming and labor intensive, and existing automatic segmentation methods suffer from issues such as numerous parameters and low precision. To resolve these issues, this study pro...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2021-02, Vol.2021, p.1-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2021 |
creator | Liu, Hengxin Li, Qiang Wang, I-Chi |
description | The segmentation of brain tumors in medical images is a crucial step of clinical treatment. Manual segmentation is time consuming and labor intensive, and existing automatic segmentation methods suffer from issues such as numerous parameters and low precision. To resolve these issues, this study proposes a learnable group convolution-based segmentation method that replaces convolution in the feature extraction stage with learnable group convolution, thereby reducing the number of convolutional network parameters and enhancing communication between convolution groups. To improve utilization of the feature maps, we added a skip connection structure between learnable group convolution modules, which increased segmentation precision. We used deep supervision to combine output images in the network output stage to reduce overfitting and enhance the recognition capabilities of the network. We tested the proposed algorithm model using the open BraTS 2018 dataset. The experiment results revealed that the proposed model is superior to 3D U-Net and DMFNet and has better segmentation results for tumor cores than No New-Net and NVDLMED, the winning methods in the BraTS 2018 challenge. The segmentation precision of the proposed method with regard to whole tumors, enhancing tumors, and tumor cores was 90.25%, 80.36%, and 86.20%. Furthermore, the proposed method uses fewer parameters and a less complex model. |
doi_str_mv | 10.1155/2021/6661083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491750700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491750700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-1dc7ec188e85fff09e148860a07840e98c1af6d7c5fc0d8251fdfc581d9432d53</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4wEscYRQbxInzrG0UJCKOLRI3CLjn9ZVagc7acXbk7Q9c9rR6JuRdhC6BfIIQOkoJjGMsiwDwpIzNACaJRGFND_vNInTCOLk6xJdhbAhHUmBDdB6jKdK1dFccW-NXeF3J1WF96ZZ44PHvyuFZ961NZ44u3NV2xhnMbfyEMSLtlZ-Z0Jvaufxk-fG4mW77fRCrbbKNrxPXKMLzaugbk53iD5fnpeT12j-MXubjOeRSJK8iUCKXAlgTDGqtSaFgpSxjHCSs5SoggngOpO5oFoQyWIKWmpBGcgiTWJJkyG6O_bW3v20KjTlxrXdG1Uo47SAnJKckI56OFLCuxC80mXtzZb73xJI2W9Z9luWpy07_P6Ir42VfG_-p_8Asg9zmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491750700</pqid></control><display><type>article</type><title>A Deep-Learning Model with Learnable Group Convolution and Deep Supervision for Brain Tumor Segmentation</title><source>Wiley-Blackwell Open Access Titles</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Hengxin ; Li, Qiang ; Wang, I-Chi</creator><contributor>Tan, Kim-Hua</contributor><creatorcontrib>Liu, Hengxin ; Li, Qiang ; Wang, I-Chi ; Tan, Kim-Hua</creatorcontrib><description>The segmentation of brain tumors in medical images is a crucial step of clinical treatment. Manual segmentation is time consuming and labor intensive, and existing automatic segmentation methods suffer from issues such as numerous parameters and low precision. To resolve these issues, this study proposes a learnable group convolution-based segmentation method that replaces convolution in the feature extraction stage with learnable group convolution, thereby reducing the number of convolutional network parameters and enhancing communication between convolution groups. To improve utilization of the feature maps, we added a skip connection structure between learnable group convolution modules, which increased segmentation precision. We used deep supervision to combine output images in the network output stage to reduce overfitting and enhance the recognition capabilities of the network. We tested the proposed algorithm model using the open BraTS 2018 dataset. The experiment results revealed that the proposed model is superior to 3D U-Net and DMFNet and has better segmentation results for tumor cores than No New-Net and NVDLMED, the winning methods in the BraTS 2018 challenge. The segmentation precision of the proposed method with regard to whole tumors, enhancing tumors, and tumor cores was 90.25%, 80.36%, and 86.20%. Furthermore, the proposed method uses fewer parameters and a less complex model.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/6661083</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Brain ; Brain cancer ; Communication ; Convolution ; Deep learning ; Engineering ; Feature extraction ; Feature maps ; Image enhancement ; Image segmentation ; Machine learning ; Magnetic resonance imaging ; Mathematical models ; Medical imaging ; Neural networks ; Parameters ; Supervision ; Three dimensional models ; Tumors</subject><ispartof>Mathematical problems in engineering, 2021-02, Vol.2021, p.1-11</ispartof><rights>Copyright © 2021 Hengxin Liu et al.</rights><rights>Copyright © 2021 Hengxin Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-1dc7ec188e85fff09e148860a07840e98c1af6d7c5fc0d8251fdfc581d9432d53</citedby><cites>FETCH-LOGICAL-c337t-1dc7ec188e85fff09e148860a07840e98c1af6d7c5fc0d8251fdfc581d9432d53</cites><orcidid>0000-0002-6763-9170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Tan, Kim-Hua</contributor><creatorcontrib>Liu, Hengxin</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Wang, I-Chi</creatorcontrib><title>A Deep-Learning Model with Learnable Group Convolution and Deep Supervision for Brain Tumor Segmentation</title><title>Mathematical problems in engineering</title><description>The segmentation of brain tumors in medical images is a crucial step of clinical treatment. Manual segmentation is time consuming and labor intensive, and existing automatic segmentation methods suffer from issues such as numerous parameters and low precision. To resolve these issues, this study proposes a learnable group convolution-based segmentation method that replaces convolution in the feature extraction stage with learnable group convolution, thereby reducing the number of convolutional network parameters and enhancing communication between convolution groups. To improve utilization of the feature maps, we added a skip connection structure between learnable group convolution modules, which increased segmentation precision. We used deep supervision to combine output images in the network output stage to reduce overfitting and enhance the recognition capabilities of the network. We tested the proposed algorithm model using the open BraTS 2018 dataset. The experiment results revealed that the proposed model is superior to 3D U-Net and DMFNet and has better segmentation results for tumor cores than No New-Net and NVDLMED, the winning methods in the BraTS 2018 challenge. The segmentation precision of the proposed method with regard to whole tumors, enhancing tumors, and tumor cores was 90.25%, 80.36%, and 86.20%. Furthermore, the proposed method uses fewer parameters and a less complex model.</description><subject>Algorithms</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Communication</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Supervision</subject><subject>Three dimensional models</subject><subject>Tumors</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kM1OwzAQhC0EEqVw4wEscYRQbxInzrG0UJCKOLRI3CLjn9ZVagc7acXbk7Q9c9rR6JuRdhC6BfIIQOkoJjGMsiwDwpIzNACaJRGFND_vNInTCOLk6xJdhbAhHUmBDdB6jKdK1dFccW-NXeF3J1WF96ZZ44PHvyuFZ961NZ44u3NV2xhnMbfyEMSLtlZ-Z0Jvaufxk-fG4mW77fRCrbbKNrxPXKMLzaugbk53iD5fnpeT12j-MXubjOeRSJK8iUCKXAlgTDGqtSaFgpSxjHCSs5SoggngOpO5oFoQyWIKWmpBGcgiTWJJkyG6O_bW3v20KjTlxrXdG1Uo47SAnJKckI56OFLCuxC80mXtzZb73xJI2W9Z9luWpy07_P6Ir42VfG_-p_8Asg9zmA</recordid><startdate>20210210</startdate><enddate>20210210</enddate><creator>Liu, Hengxin</creator><creator>Li, Qiang</creator><creator>Wang, I-Chi</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-6763-9170</orcidid></search><sort><creationdate>20210210</creationdate><title>A Deep-Learning Model with Learnable Group Convolution and Deep Supervision for Brain Tumor Segmentation</title><author>Liu, Hengxin ; Li, Qiang ; Wang, I-Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-1dc7ec188e85fff09e148860a07840e98c1af6d7c5fc0d8251fdfc581d9432d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Communication</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Supervision</topic><topic>Three dimensional models</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hengxin</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Wang, I-Chi</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hengxin</au><au>Li, Qiang</au><au>Wang, I-Chi</au><au>Tan, Kim-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep-Learning Model with Learnable Group Convolution and Deep Supervision for Brain Tumor Segmentation</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021-02-10</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The segmentation of brain tumors in medical images is a crucial step of clinical treatment. Manual segmentation is time consuming and labor intensive, and existing automatic segmentation methods suffer from issues such as numerous parameters and low precision. To resolve these issues, this study proposes a learnable group convolution-based segmentation method that replaces convolution in the feature extraction stage with learnable group convolution, thereby reducing the number of convolutional network parameters and enhancing communication between convolution groups. To improve utilization of the feature maps, we added a skip connection structure between learnable group convolution modules, which increased segmentation precision. We used deep supervision to combine output images in the network output stage to reduce overfitting and enhance the recognition capabilities of the network. We tested the proposed algorithm model using the open BraTS 2018 dataset. The experiment results revealed that the proposed model is superior to 3D U-Net and DMFNet and has better segmentation results for tumor cores than No New-Net and NVDLMED, the winning methods in the BraTS 2018 challenge. The segmentation precision of the proposed method with regard to whole tumors, enhancing tumors, and tumor cores was 90.25%, 80.36%, and 86.20%. Furthermore, the proposed method uses fewer parameters and a less complex model.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/6661083</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6763-9170</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2021-02, Vol.2021, p.1-11 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2491750700 |
source | Wiley-Blackwell Open Access Titles; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Brain Brain cancer Communication Convolution Deep learning Engineering Feature extraction Feature maps Image enhancement Image segmentation Machine learning Magnetic resonance imaging Mathematical models Medical imaging Neural networks Parameters Supervision Three dimensional models Tumors |
title | A Deep-Learning Model with Learnable Group Convolution and Deep Supervision for Brain Tumor Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T22%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep-Learning%20Model%20with%20Learnable%20Group%20Convolution%20and%20Deep%20Supervision%20for%20Brain%20Tumor%20Segmentation&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Liu,%20Hengxin&rft.date=2021-02-10&rft.volume=2021&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/6661083&rft_dat=%3Cproquest_cross%3E2491750700%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491750700&rft_id=info:pmid/&rfr_iscdi=true |