Computational Fluid Dynamics Compatible Transition Modeling Using an Amplification Factor Transport Equation

A new laminar–turbulent transition model for low-turbulence external aerodynamic applications is presented that incorporates linear stability theory in a manner compatible with modern computational fluid dynamics solvers. The model uses a new transport equation that describes the growth of the maxim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2014-11, Vol.52 (11), p.2506-2512
Hauptverfasser: Coder, James G, Maughmer, Mark D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2512
container_issue 11
container_start_page 2506
container_title AIAA journal
container_volume 52
creator Coder, James G
Maughmer, Mark D
description A new laminar–turbulent transition model for low-turbulence external aerodynamic applications is presented that incorporates linear stability theory in a manner compatible with modern computational fluid dynamics solvers. The model uses a new transport equation that describes the growth of the maximum Tollmien–Schlichting instability amplitude in the presence of a boundary layer. To avoid the need for integration paths and nonlocal operations, a locally defined nondimensional pressure-gradient parameter is used that serves as an estimator of the integral boundary-layer properties. The model has been implemented into the OVERFLOW 2.2f solver. Comparisons of predictions using the new model with high-quality wind-tunnel measurements of airfoil section characteristics confirm the predictive qualities of the model, as well as its improvement over the current state of the art in computational fluid dynamics transition modeling at approximately half the computational expense.
doi_str_mv 10.2514/1.J052905
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_2491625233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671592973</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-efb7774e701c12c6704a91d8d6d1290219d707fe7681f15029ee29d52c1586b3</originalsourceid><addsrcrecordid>eNp90U9LwzAYBvAgCs7pwW8QEEQPnXnTpmmOY27-YeJlgreQtalkpE2XtId9e7t1B1HwkhCeXx5IXoSugUwog-QBJq-EUUHYCRoBi-MoztjnKRoRQiCChNFzdBHCpj9RnsEI2Zmrmq5VrXG1snhhO1Pgx12tKpMHvA_7aG01XnlVB7Nn-M0V2pr6C3-E_apqPK0aa0qTH2rwQuWt88ONxvkWz7fdIblEZ6WyQV8d9zFaLear2XO0fH96mU2XkYoT0Ua6XHPOE80J5EDzlJNECSiyIi2gfxoFUXDCS83TDEpghAqtqSgYzYFl6Toeo7uhtvFu2-nQysqEXFurau26ICHlwAQVPO7pzS-6cZ3vfyJImghIKaPxvwpSImKeUEp7dT-o3LsQvC5l402l_E4CkfvhSJDH4fT2drDKKPWj7Q_8BsCEi8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609374222</pqid></control><display><type>article</type><title>Computational Fluid Dynamics Compatible Transition Modeling Using an Amplification Factor Transport Equation</title><source>Alma/SFX Local Collection</source><creator>Coder, James G ; Maughmer, Mark D</creator><creatorcontrib>Coder, James G ; Maughmer, Mark D</creatorcontrib><description>A new laminar–turbulent transition model for low-turbulence external aerodynamic applications is presented that incorporates linear stability theory in a manner compatible with modern computational fluid dynamics solvers. The model uses a new transport equation that describes the growth of the maximum Tollmien–Schlichting instability amplitude in the presence of a boundary layer. To avoid the need for integration paths and nonlocal operations, a locally defined nondimensional pressure-gradient parameter is used that serves as an estimator of the integral boundary-layer properties. The model has been implemented into the OVERFLOW 2.2f solver. Comparisons of predictions using the new model with high-quality wind-tunnel measurements of airfoil section characteristics confirm the predictive qualities of the model, as well as its improvement over the current state of the art in computational fluid dynamics transition modeling at approximately half the computational expense.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J052905</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamic stability ; Aerodynamics ; Aerospace engineering ; Airfoils ; Boundary layers ; Compatibility ; Computational fluid dynamics ; Dynamic stability ; Fluid dynamics ; Fluid flow ; Mathematical models ; Solvers ; Stability ; Transport equations ; Turbulence ; Wind tunnels</subject><ispartof>AIAA journal, 2014-11, Vol.52 (11), p.2506-2512</ispartof><rights>Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-385X/14 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-efb7774e701c12c6704a91d8d6d1290219d707fe7681f15029ee29d52c1586b3</citedby><cites>FETCH-LOGICAL-a349t-efb7774e701c12c6704a91d8d6d1290219d707fe7681f15029ee29d52c1586b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Coder, James G</creatorcontrib><creatorcontrib>Maughmer, Mark D</creatorcontrib><title>Computational Fluid Dynamics Compatible Transition Modeling Using an Amplification Factor Transport Equation</title><title>AIAA journal</title><description>A new laminar–turbulent transition model for low-turbulence external aerodynamic applications is presented that incorporates linear stability theory in a manner compatible with modern computational fluid dynamics solvers. The model uses a new transport equation that describes the growth of the maximum Tollmien–Schlichting instability amplitude in the presence of a boundary layer. To avoid the need for integration paths and nonlocal operations, a locally defined nondimensional pressure-gradient parameter is used that serves as an estimator of the integral boundary-layer properties. The model has been implemented into the OVERFLOW 2.2f solver. Comparisons of predictions using the new model with high-quality wind-tunnel measurements of airfoil section characteristics confirm the predictive qualities of the model, as well as its improvement over the current state of the art in computational fluid dynamics transition modeling at approximately half the computational expense.</description><subject>Aerodynamic stability</subject><subject>Aerodynamics</subject><subject>Aerospace engineering</subject><subject>Airfoils</subject><subject>Boundary layers</subject><subject>Compatibility</subject><subject>Computational fluid dynamics</subject><subject>Dynamic stability</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Mathematical models</subject><subject>Solvers</subject><subject>Stability</subject><subject>Transport equations</subject><subject>Turbulence</subject><subject>Wind tunnels</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp90U9LwzAYBvAgCs7pwW8QEEQPnXnTpmmOY27-YeJlgreQtalkpE2XtId9e7t1B1HwkhCeXx5IXoSugUwog-QBJq-EUUHYCRoBi-MoztjnKRoRQiCChNFzdBHCpj9RnsEI2Zmrmq5VrXG1snhhO1Pgx12tKpMHvA_7aG01XnlVB7Nn-M0V2pr6C3-E_apqPK0aa0qTH2rwQuWt88ONxvkWz7fdIblEZ6WyQV8d9zFaLear2XO0fH96mU2XkYoT0Ua6XHPOE80J5EDzlJNECSiyIi2gfxoFUXDCS83TDEpghAqtqSgYzYFl6Toeo7uhtvFu2-nQysqEXFurau26ICHlwAQVPO7pzS-6cZ3vfyJImghIKaPxvwpSImKeUEp7dT-o3LsQvC5l402l_E4CkfvhSJDH4fT2drDKKPWj7Q_8BsCEi8Y</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Coder, James G</creator><creator>Maughmer, Mark D</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201411</creationdate><title>Computational Fluid Dynamics Compatible Transition Modeling Using an Amplification Factor Transport Equation</title><author>Coder, James G ; Maughmer, Mark D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-efb7774e701c12c6704a91d8d6d1290219d707fe7681f15029ee29d52c1586b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerodynamic stability</topic><topic>Aerodynamics</topic><topic>Aerospace engineering</topic><topic>Airfoils</topic><topic>Boundary layers</topic><topic>Compatibility</topic><topic>Computational fluid dynamics</topic><topic>Dynamic stability</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Mathematical models</topic><topic>Solvers</topic><topic>Stability</topic><topic>Transport equations</topic><topic>Turbulence</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coder, James G</creatorcontrib><creatorcontrib>Maughmer, Mark D</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coder, James G</au><au>Maughmer, Mark D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Fluid Dynamics Compatible Transition Modeling Using an Amplification Factor Transport Equation</atitle><jtitle>AIAA journal</jtitle><date>2014-11</date><risdate>2014</risdate><volume>52</volume><issue>11</issue><spage>2506</spage><epage>2512</epage><pages>2506-2512</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>A new laminar–turbulent transition model for low-turbulence external aerodynamic applications is presented that incorporates linear stability theory in a manner compatible with modern computational fluid dynamics solvers. The model uses a new transport equation that describes the growth of the maximum Tollmien–Schlichting instability amplitude in the presence of a boundary layer. To avoid the need for integration paths and nonlocal operations, a locally defined nondimensional pressure-gradient parameter is used that serves as an estimator of the integral boundary-layer properties. The model has been implemented into the OVERFLOW 2.2f solver. Comparisons of predictions using the new model with high-quality wind-tunnel measurements of airfoil section characteristics confirm the predictive qualities of the model, as well as its improvement over the current state of the art in computational fluid dynamics transition modeling at approximately half the computational expense.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J052905</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2014-11, Vol.52 (11), p.2506-2512
issn 0001-1452
1533-385X
language eng
recordid cdi_proquest_journals_2491625233
source Alma/SFX Local Collection
subjects Aerodynamic stability
Aerodynamics
Aerospace engineering
Airfoils
Boundary layers
Compatibility
Computational fluid dynamics
Dynamic stability
Fluid dynamics
Fluid flow
Mathematical models
Solvers
Stability
Transport equations
Turbulence
Wind tunnels
title Computational Fluid Dynamics Compatible Transition Modeling Using an Amplification Factor Transport Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Fluid%20Dynamics%20Compatible%20Transition%20Modeling%20Using%20an%20Amplification%20Factor%20Transport%20Equation&rft.jtitle=AIAA%20journal&rft.au=Coder,%20James%20G&rft.date=2014-11&rft.volume=52&rft.issue=11&rft.spage=2506&rft.epage=2512&rft.pages=2506-2512&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J052905&rft_dat=%3Cproquest_aiaa_%3E1671592973%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1609374222&rft_id=info:pmid/&rfr_iscdi=true