Computational Fluid Dynamics Compatible Transition Modeling Using an Amplification Factor Transport Equation
A new laminar–turbulent transition model for low-turbulence external aerodynamic applications is presented that incorporates linear stability theory in a manner compatible with modern computational fluid dynamics solvers. The model uses a new transport equation that describes the growth of the maxim...
Gespeichert in:
Veröffentlicht in: | AIAA journal 2014-11, Vol.52 (11), p.2506-2512 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2512 |
---|---|
container_issue | 11 |
container_start_page | 2506 |
container_title | AIAA journal |
container_volume | 52 |
creator | Coder, James G Maughmer, Mark D |
description | A new laminar–turbulent transition model for low-turbulence external aerodynamic applications is presented that incorporates linear stability theory in a manner compatible with modern computational fluid dynamics solvers. The model uses a new transport equation that describes the growth of the maximum Tollmien–Schlichting instability amplitude in the presence of a boundary layer. To avoid the need for integration paths and nonlocal operations, a locally defined nondimensional pressure-gradient parameter is used that serves as an estimator of the integral boundary-layer properties. The model has been implemented into the OVERFLOW 2.2f solver. Comparisons of predictions using the new model with high-quality wind-tunnel measurements of airfoil section characteristics confirm the predictive qualities of the model, as well as its improvement over the current state of the art in computational fluid dynamics transition modeling at approximately half the computational expense. |
doi_str_mv | 10.2514/1.J052905 |
format | Article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_2491625233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671592973</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-efb7774e701c12c6704a91d8d6d1290219d707fe7681f15029ee29d52c1586b3</originalsourceid><addsrcrecordid>eNp90U9LwzAYBvAgCs7pwW8QEEQPnXnTpmmOY27-YeJlgreQtalkpE2XtId9e7t1B1HwkhCeXx5IXoSugUwog-QBJq-EUUHYCRoBi-MoztjnKRoRQiCChNFzdBHCpj9RnsEI2Zmrmq5VrXG1snhhO1Pgx12tKpMHvA_7aG01XnlVB7Nn-M0V2pr6C3-E_apqPK0aa0qTH2rwQuWt88ONxvkWz7fdIblEZ6WyQV8d9zFaLear2XO0fH96mU2XkYoT0Ua6XHPOE80J5EDzlJNECSiyIi2gfxoFUXDCS83TDEpghAqtqSgYzYFl6Toeo7uhtvFu2-nQysqEXFurau26ICHlwAQVPO7pzS-6cZ3vfyJImghIKaPxvwpSImKeUEp7dT-o3LsQvC5l402l_E4CkfvhSJDH4fT2drDKKPWj7Q_8BsCEi8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609374222</pqid></control><display><type>article</type><title>Computational Fluid Dynamics Compatible Transition Modeling Using an Amplification Factor Transport Equation</title><source>Alma/SFX Local Collection</source><creator>Coder, James G ; Maughmer, Mark D</creator><creatorcontrib>Coder, James G ; Maughmer, Mark D</creatorcontrib><description>A new laminar–turbulent transition model for low-turbulence external aerodynamic applications is presented that incorporates linear stability theory in a manner compatible with modern computational fluid dynamics solvers. The model uses a new transport equation that describes the growth of the maximum Tollmien–Schlichting instability amplitude in the presence of a boundary layer. To avoid the need for integration paths and nonlocal operations, a locally defined nondimensional pressure-gradient parameter is used that serves as an estimator of the integral boundary-layer properties. The model has been implemented into the OVERFLOW 2.2f solver. Comparisons of predictions using the new model with high-quality wind-tunnel measurements of airfoil section characteristics confirm the predictive qualities of the model, as well as its improvement over the current state of the art in computational fluid dynamics transition modeling at approximately half the computational expense.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J052905</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamic stability ; Aerodynamics ; Aerospace engineering ; Airfoils ; Boundary layers ; Compatibility ; Computational fluid dynamics ; Dynamic stability ; Fluid dynamics ; Fluid flow ; Mathematical models ; Solvers ; Stability ; Transport equations ; Turbulence ; Wind tunnels</subject><ispartof>AIAA journal, 2014-11, Vol.52 (11), p.2506-2512</ispartof><rights>Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-385X/14 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-efb7774e701c12c6704a91d8d6d1290219d707fe7681f15029ee29d52c1586b3</citedby><cites>FETCH-LOGICAL-a349t-efb7774e701c12c6704a91d8d6d1290219d707fe7681f15029ee29d52c1586b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Coder, James G</creatorcontrib><creatorcontrib>Maughmer, Mark D</creatorcontrib><title>Computational Fluid Dynamics Compatible Transition Modeling Using an Amplification Factor Transport Equation</title><title>AIAA journal</title><description>A new laminar–turbulent transition model for low-turbulence external aerodynamic applications is presented that incorporates linear stability theory in a manner compatible with modern computational fluid dynamics solvers. The model uses a new transport equation that describes the growth of the maximum Tollmien–Schlichting instability amplitude in the presence of a boundary layer. To avoid the need for integration paths and nonlocal operations, a locally defined nondimensional pressure-gradient parameter is used that serves as an estimator of the integral boundary-layer properties. The model has been implemented into the OVERFLOW 2.2f solver. Comparisons of predictions using the new model with high-quality wind-tunnel measurements of airfoil section characteristics confirm the predictive qualities of the model, as well as its improvement over the current state of the art in computational fluid dynamics transition modeling at approximately half the computational expense.</description><subject>Aerodynamic stability</subject><subject>Aerodynamics</subject><subject>Aerospace engineering</subject><subject>Airfoils</subject><subject>Boundary layers</subject><subject>Compatibility</subject><subject>Computational fluid dynamics</subject><subject>Dynamic stability</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Mathematical models</subject><subject>Solvers</subject><subject>Stability</subject><subject>Transport equations</subject><subject>Turbulence</subject><subject>Wind tunnels</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp90U9LwzAYBvAgCs7pwW8QEEQPnXnTpmmOY27-YeJlgreQtalkpE2XtId9e7t1B1HwkhCeXx5IXoSugUwog-QBJq-EUUHYCRoBi-MoztjnKRoRQiCChNFzdBHCpj9RnsEI2Zmrmq5VrXG1snhhO1Pgx12tKpMHvA_7aG01XnlVB7Nn-M0V2pr6C3-E_apqPK0aa0qTH2rwQuWt88ONxvkWz7fdIblEZ6WyQV8d9zFaLear2XO0fH96mU2XkYoT0Ua6XHPOE80J5EDzlJNECSiyIi2gfxoFUXDCS83TDEpghAqtqSgYzYFl6Toeo7uhtvFu2-nQysqEXFurau26ICHlwAQVPO7pzS-6cZ3vfyJImghIKaPxvwpSImKeUEp7dT-o3LsQvC5l402l_E4CkfvhSJDH4fT2drDKKPWj7Q_8BsCEi8Y</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Coder, James G</creator><creator>Maughmer, Mark D</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201411</creationdate><title>Computational Fluid Dynamics Compatible Transition Modeling Using an Amplification Factor Transport Equation</title><author>Coder, James G ; Maughmer, Mark D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-efb7774e701c12c6704a91d8d6d1290219d707fe7681f15029ee29d52c1586b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerodynamic stability</topic><topic>Aerodynamics</topic><topic>Aerospace engineering</topic><topic>Airfoils</topic><topic>Boundary layers</topic><topic>Compatibility</topic><topic>Computational fluid dynamics</topic><topic>Dynamic stability</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Mathematical models</topic><topic>Solvers</topic><topic>Stability</topic><topic>Transport equations</topic><topic>Turbulence</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coder, James G</creatorcontrib><creatorcontrib>Maughmer, Mark D</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coder, James G</au><au>Maughmer, Mark D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Fluid Dynamics Compatible Transition Modeling Using an Amplification Factor Transport Equation</atitle><jtitle>AIAA journal</jtitle><date>2014-11</date><risdate>2014</risdate><volume>52</volume><issue>11</issue><spage>2506</spage><epage>2512</epage><pages>2506-2512</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>A new laminar–turbulent transition model for low-turbulence external aerodynamic applications is presented that incorporates linear stability theory in a manner compatible with modern computational fluid dynamics solvers. The model uses a new transport equation that describes the growth of the maximum Tollmien–Schlichting instability amplitude in the presence of a boundary layer. To avoid the need for integration paths and nonlocal operations, a locally defined nondimensional pressure-gradient parameter is used that serves as an estimator of the integral boundary-layer properties. The model has been implemented into the OVERFLOW 2.2f solver. Comparisons of predictions using the new model with high-quality wind-tunnel measurements of airfoil section characteristics confirm the predictive qualities of the model, as well as its improvement over the current state of the art in computational fluid dynamics transition modeling at approximately half the computational expense.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J052905</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2014-11, Vol.52 (11), p.2506-2512 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_proquest_journals_2491625233 |
source | Alma/SFX Local Collection |
subjects | Aerodynamic stability Aerodynamics Aerospace engineering Airfoils Boundary layers Compatibility Computational fluid dynamics Dynamic stability Fluid dynamics Fluid flow Mathematical models Solvers Stability Transport equations Turbulence Wind tunnels |
title | Computational Fluid Dynamics Compatible Transition Modeling Using an Amplification Factor Transport Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Fluid%20Dynamics%20Compatible%20Transition%20Modeling%20Using%20an%20Amplification%20Factor%20Transport%20Equation&rft.jtitle=AIAA%20journal&rft.au=Coder,%20James%20G&rft.date=2014-11&rft.volume=52&rft.issue=11&rft.spage=2506&rft.epage=2512&rft.pages=2506-2512&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J052905&rft_dat=%3Cproquest_aiaa_%3E1671592973%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1609374222&rft_id=info:pmid/&rfr_iscdi=true |