Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers
Composition and microstructure are two determinative factors for carbon-based absorbers, therefore, balancing the dual coordination possess a formidable importance in the final performance. In this paper, magnetic particles (Fe, Co and Ni) encapsulated in porous N-doped carbon as lightweight and eff...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2021-03, Vol.173, p.655-666 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 666 |
---|---|
container_issue | |
container_start_page | 655 |
container_title | Carbon (New York) |
container_volume | 173 |
creator | Liu, Panbo Gao, Sai Wang, Yi Huang, Ying Zhou, Fengtao Liu, Peizhou |
description | Composition and microstructure are two determinative factors for carbon-based absorbers, therefore, balancing the dual coordination possess a formidable importance in the final performance. In this paper, magnetic particles (Fe, Co and Ni) encapsulated in porous N-doped carbon as lightweight and efficient microwave absorbers are reported. The coordination assembly strategy is firstly used to fabricate metal-organic polymer coordination composites, then, these metal ions are in situ reduced by a carbonization process, resulting in magnetic porous N-doped carbon (Fe@PNC, Co@PNC and Ni@PNC) composites with adjusted composition and porous microstructure. Benefiting from the porous microstructure with large surface area, enhanced polarization loss and the synergetic effects between magnetic and dielectric loss, the composites exhibit unexceptionable attenuation ability. Concretely, the minimum reflection loss for Fe@PNC, Co@PNC and Ni@PNC reaches as high as −61.6 dB, −65 dB and −65.1 dB with the matched thickness of 2 mm, 2.5 mm and 3.5 mm, and the effective bandwidths are 5.3 GHz (at 3.4 mm), 6.7 GHz (at 2 mm) and 8.6 GHz (at 2.5 mm), respectively. This strategy provides not only a new guidance in the fabrication of carbon absorbers, but also a comprehension in the structure design and composition control through the chelating ability.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2020.11.043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491612861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622320311222</els_id><sourcerecordid>2491612861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-4fb8069b1a0503a601eca3ffd3720e4a1db3f460b54bb00b2946ba47ea02a19c3</originalsourceid><addsrcrecordid>eNp9UEtv2zAMFoYVWNb2H-wgYGenpKQ69mXAEOxRoI9LexYkmW5lJJYnyQl67D-vDafXXUiQ34Pgx9g3hDUCllfd2ploQ78WIKYVrkHJT2yF1UYWsqrxM1sBQFWUQsgv7GtK3TSqCtWKvd2Z556yd3wIMYyJ3xdNGKjhiyN3YT-E5DMlfvT5hZumG1Oe8RPgJ5Lpmw_53rsYUo6jy2Mk3obId_75JR9prgt8NAfixqYQLcV0wc5as0t0eern7On3r8ft3-L24c_N9udt4aRUuVCtraCsLRq4BmlKQHJGtm0jNwJIGWysbFUJ9lpZC2BFrUpr1IYMCIO1k-fs--I7xPBvpJR1F8bYTye1UDWWKKoSJ5ZaWPMbKVKrh-j3Jr5qBD2HrTu9RKPnsDWinsKeZD8WGU0fHDxFnZyn3lHjI7msm-D_b_AOLdiNuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491612861</pqid></control><display><type>article</type><title>Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Liu, Panbo ; Gao, Sai ; Wang, Yi ; Huang, Ying ; Zhou, Fengtao ; Liu, Peizhou</creator><creatorcontrib>Liu, Panbo ; Gao, Sai ; Wang, Yi ; Huang, Ying ; Zhou, Fengtao ; Liu, Peizhou</creatorcontrib><description>Composition and microstructure are two determinative factors for carbon-based absorbers, therefore, balancing the dual coordination possess a formidable importance in the final performance. In this paper, magnetic particles (Fe, Co and Ni) encapsulated in porous N-doped carbon as lightweight and efficient microwave absorbers are reported. The coordination assembly strategy is firstly used to fabricate metal-organic polymer coordination composites, then, these metal ions are in situ reduced by a carbonization process, resulting in magnetic porous N-doped carbon (Fe@PNC, Co@PNC and Ni@PNC) composites with adjusted composition and porous microstructure. Benefiting from the porous microstructure with large surface area, enhanced polarization loss and the synergetic effects between magnetic and dielectric loss, the composites exhibit unexceptionable attenuation ability. Concretely, the minimum reflection loss for Fe@PNC, Co@PNC and Ni@PNC reaches as high as −61.6 dB, −65 dB and −65.1 dB with the matched thickness of 2 mm, 2.5 mm and 3.5 mm, and the effective bandwidths are 5.3 GHz (at 3.4 mm), 6.7 GHz (at 2 mm) and 8.6 GHz (at 2.5 mm), respectively. This strategy provides not only a new guidance in the fabrication of carbon absorbers, but also a comprehension in the structure design and composition control through the chelating ability.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2020.11.043</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Attenuation ; Carbon ; Chelation ; Cobalt ; Composite materials ; Composition ; Coordination ; Dielectric loss ; Impedance matching ; Iron ; Lightweight ; Magnetic fields ; Magnetic particles ; Microstructure ; Microwave absorbers ; N-doped carbon ; Nickel ; Organic polymer composites ; Particulate composites ; Polymer matrix composites ; Porous materials ; Strong microwave absorption</subject><ispartof>Carbon (New York), 2021-03, Vol.173, p.655-666</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-4fb8069b1a0503a601eca3ffd3720e4a1db3f460b54bb00b2946ba47ea02a19c3</citedby><cites>FETCH-LOGICAL-c334t-4fb8069b1a0503a601eca3ffd3720e4a1db3f460b54bb00b2946ba47ea02a19c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2020.11.043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Liu, Panbo</creatorcontrib><creatorcontrib>Gao, Sai</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><creatorcontrib>Zhou, Fengtao</creatorcontrib><creatorcontrib>Liu, Peizhou</creatorcontrib><title>Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers</title><title>Carbon (New York)</title><description>Composition and microstructure are two determinative factors for carbon-based absorbers, therefore, balancing the dual coordination possess a formidable importance in the final performance. In this paper, magnetic particles (Fe, Co and Ni) encapsulated in porous N-doped carbon as lightweight and efficient microwave absorbers are reported. The coordination assembly strategy is firstly used to fabricate metal-organic polymer coordination composites, then, these metal ions are in situ reduced by a carbonization process, resulting in magnetic porous N-doped carbon (Fe@PNC, Co@PNC and Ni@PNC) composites with adjusted composition and porous microstructure. Benefiting from the porous microstructure with large surface area, enhanced polarization loss and the synergetic effects between magnetic and dielectric loss, the composites exhibit unexceptionable attenuation ability. Concretely, the minimum reflection loss for Fe@PNC, Co@PNC and Ni@PNC reaches as high as −61.6 dB, −65 dB and −65.1 dB with the matched thickness of 2 mm, 2.5 mm and 3.5 mm, and the effective bandwidths are 5.3 GHz (at 3.4 mm), 6.7 GHz (at 2 mm) and 8.6 GHz (at 2.5 mm), respectively. This strategy provides not only a new guidance in the fabrication of carbon absorbers, but also a comprehension in the structure design and composition control through the chelating ability.
[Display omitted]</description><subject>Attenuation</subject><subject>Carbon</subject><subject>Chelation</subject><subject>Cobalt</subject><subject>Composite materials</subject><subject>Composition</subject><subject>Coordination</subject><subject>Dielectric loss</subject><subject>Impedance matching</subject><subject>Iron</subject><subject>Lightweight</subject><subject>Magnetic fields</subject><subject>Magnetic particles</subject><subject>Microstructure</subject><subject>Microwave absorbers</subject><subject>N-doped carbon</subject><subject>Nickel</subject><subject>Organic polymer composites</subject><subject>Particulate composites</subject><subject>Polymer matrix composites</subject><subject>Porous materials</subject><subject>Strong microwave absorption</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UEtv2zAMFoYVWNb2H-wgYGenpKQ69mXAEOxRoI9LexYkmW5lJJYnyQl67D-vDafXXUiQ34Pgx9g3hDUCllfd2ploQ78WIKYVrkHJT2yF1UYWsqrxM1sBQFWUQsgv7GtK3TSqCtWKvd2Z556yd3wIMYyJ3xdNGKjhiyN3YT-E5DMlfvT5hZumG1Oe8RPgJ5Lpmw_53rsYUo6jy2Mk3obId_75JR9prgt8NAfixqYQLcV0wc5as0t0eern7On3r8ft3-L24c_N9udt4aRUuVCtraCsLRq4BmlKQHJGtm0jNwJIGWysbFUJ9lpZC2BFrUpr1IYMCIO1k-fs--I7xPBvpJR1F8bYTye1UDWWKKoSJ5ZaWPMbKVKrh-j3Jr5qBD2HrTu9RKPnsDWinsKeZD8WGU0fHDxFnZyn3lHjI7msm-D_b_AOLdiNuw</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Liu, Panbo</creator><creator>Gao, Sai</creator><creator>Wang, Yi</creator><creator>Huang, Ying</creator><creator>Zhou, Fengtao</creator><creator>Liu, Peizhou</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202103</creationdate><title>Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers</title><author>Liu, Panbo ; Gao, Sai ; Wang, Yi ; Huang, Ying ; Zhou, Fengtao ; Liu, Peizhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-4fb8069b1a0503a601eca3ffd3720e4a1db3f460b54bb00b2946ba47ea02a19c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Attenuation</topic><topic>Carbon</topic><topic>Chelation</topic><topic>Cobalt</topic><topic>Composite materials</topic><topic>Composition</topic><topic>Coordination</topic><topic>Dielectric loss</topic><topic>Impedance matching</topic><topic>Iron</topic><topic>Lightweight</topic><topic>Magnetic fields</topic><topic>Magnetic particles</topic><topic>Microstructure</topic><topic>Microwave absorbers</topic><topic>N-doped carbon</topic><topic>Nickel</topic><topic>Organic polymer composites</topic><topic>Particulate composites</topic><topic>Polymer matrix composites</topic><topic>Porous materials</topic><topic>Strong microwave absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Panbo</creatorcontrib><creatorcontrib>Gao, Sai</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><creatorcontrib>Zhou, Fengtao</creatorcontrib><creatorcontrib>Liu, Peizhou</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Panbo</au><au>Gao, Sai</au><au>Wang, Yi</au><au>Huang, Ying</au><au>Zhou, Fengtao</au><au>Liu, Peizhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers</atitle><jtitle>Carbon (New York)</jtitle><date>2021-03</date><risdate>2021</risdate><volume>173</volume><spage>655</spage><epage>666</epage><pages>655-666</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Composition and microstructure are two determinative factors for carbon-based absorbers, therefore, balancing the dual coordination possess a formidable importance in the final performance. In this paper, magnetic particles (Fe, Co and Ni) encapsulated in porous N-doped carbon as lightweight and efficient microwave absorbers are reported. The coordination assembly strategy is firstly used to fabricate metal-organic polymer coordination composites, then, these metal ions are in situ reduced by a carbonization process, resulting in magnetic porous N-doped carbon (Fe@PNC, Co@PNC and Ni@PNC) composites with adjusted composition and porous microstructure. Benefiting from the porous microstructure with large surface area, enhanced polarization loss and the synergetic effects between magnetic and dielectric loss, the composites exhibit unexceptionable attenuation ability. Concretely, the minimum reflection loss for Fe@PNC, Co@PNC and Ni@PNC reaches as high as −61.6 dB, −65 dB and −65.1 dB with the matched thickness of 2 mm, 2.5 mm and 3.5 mm, and the effective bandwidths are 5.3 GHz (at 3.4 mm), 6.7 GHz (at 2 mm) and 8.6 GHz (at 2.5 mm), respectively. This strategy provides not only a new guidance in the fabrication of carbon absorbers, but also a comprehension in the structure design and composition control through the chelating ability.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2020.11.043</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2021-03, Vol.173, p.655-666 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2491612861 |
source | Access via ScienceDirect (Elsevier) |
subjects | Attenuation Carbon Chelation Cobalt Composite materials Composition Coordination Dielectric loss Impedance matching Iron Lightweight Magnetic fields Magnetic particles Microstructure Microwave absorbers N-doped carbon Nickel Organic polymer composites Particulate composites Polymer matrix composites Porous materials Strong microwave absorption |
title | Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20porous%20N-doped%20carbon%20composites%20with%20adjusted%20composition%20and%20porous%20microstructure%20for%20lightweight%20microwave%20absorbers&rft.jtitle=Carbon%20(New%20York)&rft.au=Liu,%20Panbo&rft.date=2021-03&rft.volume=173&rft.spage=655&rft.epage=666&rft.pages=655-666&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2020.11.043&rft_dat=%3Cproquest_cross%3E2491612861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491612861&rft_id=info:pmid/&rft_els_id=S0008622320311222&rfr_iscdi=true |