Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers

Composition and microstructure are two determinative factors for carbon-based absorbers, therefore, balancing the dual coordination possess a formidable importance in the final performance. In this paper, magnetic particles (Fe, Co and Ni) encapsulated in porous N-doped carbon as lightweight and eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2021-03, Vol.173, p.655-666
Hauptverfasser: Liu, Panbo, Gao, Sai, Wang, Yi, Huang, Ying, Zhou, Fengtao, Liu, Peizhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 666
container_issue
container_start_page 655
container_title Carbon (New York)
container_volume 173
creator Liu, Panbo
Gao, Sai
Wang, Yi
Huang, Ying
Zhou, Fengtao
Liu, Peizhou
description Composition and microstructure are two determinative factors for carbon-based absorbers, therefore, balancing the dual coordination possess a formidable importance in the final performance. In this paper, magnetic particles (Fe, Co and Ni) encapsulated in porous N-doped carbon as lightweight and efficient microwave absorbers are reported. The coordination assembly strategy is firstly used to fabricate metal-organic polymer coordination composites, then, these metal ions are in situ reduced by a carbonization process, resulting in magnetic porous N-doped carbon (Fe@PNC, Co@PNC and Ni@PNC) composites with adjusted composition and porous microstructure. Benefiting from the porous microstructure with large surface area, enhanced polarization loss and the synergetic effects between magnetic and dielectric loss, the composites exhibit unexceptionable attenuation ability. Concretely, the minimum reflection loss for Fe@PNC, Co@PNC and Ni@PNC reaches as high as −61.6 dB, −65 dB and −65.1 dB with the matched thickness of 2 mm, 2.5 mm and 3.5 mm, and the effective bandwidths are 5.3 GHz (at 3.4 mm), 6.7 GHz (at 2 mm) and 8.6 GHz (at 2.5 mm), respectively. This strategy provides not only a new guidance in the fabrication of carbon absorbers, but also a comprehension in the structure design and composition control through the chelating ability. [Display omitted]
doi_str_mv 10.1016/j.carbon.2020.11.043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491612861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622320311222</els_id><sourcerecordid>2491612861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-4fb8069b1a0503a601eca3ffd3720e4a1db3f460b54bb00b2946ba47ea02a19c3</originalsourceid><addsrcrecordid>eNp9UEtv2zAMFoYVWNb2H-wgYGenpKQ69mXAEOxRoI9LexYkmW5lJJYnyQl67D-vDafXXUiQ34Pgx9g3hDUCllfd2ploQ78WIKYVrkHJT2yF1UYWsqrxM1sBQFWUQsgv7GtK3TSqCtWKvd2Z556yd3wIMYyJ3xdNGKjhiyN3YT-E5DMlfvT5hZumG1Oe8RPgJ5Lpmw_53rsYUo6jy2Mk3obId_75JR9prgt8NAfixqYQLcV0wc5as0t0eern7On3r8ft3-L24c_N9udt4aRUuVCtraCsLRq4BmlKQHJGtm0jNwJIGWysbFUJ9lpZC2BFrUpr1IYMCIO1k-fs--I7xPBvpJR1F8bYTye1UDWWKKoSJ5ZaWPMbKVKrh-j3Jr5qBD2HrTu9RKPnsDWinsKeZD8WGU0fHDxFnZyn3lHjI7msm-D_b_AOLdiNuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491612861</pqid></control><display><type>article</type><title>Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Liu, Panbo ; Gao, Sai ; Wang, Yi ; Huang, Ying ; Zhou, Fengtao ; Liu, Peizhou</creator><creatorcontrib>Liu, Panbo ; Gao, Sai ; Wang, Yi ; Huang, Ying ; Zhou, Fengtao ; Liu, Peizhou</creatorcontrib><description>Composition and microstructure are two determinative factors for carbon-based absorbers, therefore, balancing the dual coordination possess a formidable importance in the final performance. In this paper, magnetic particles (Fe, Co and Ni) encapsulated in porous N-doped carbon as lightweight and efficient microwave absorbers are reported. The coordination assembly strategy is firstly used to fabricate metal-organic polymer coordination composites, then, these metal ions are in situ reduced by a carbonization process, resulting in magnetic porous N-doped carbon (Fe@PNC, Co@PNC and Ni@PNC) composites with adjusted composition and porous microstructure. Benefiting from the porous microstructure with large surface area, enhanced polarization loss and the synergetic effects between magnetic and dielectric loss, the composites exhibit unexceptionable attenuation ability. Concretely, the minimum reflection loss for Fe@PNC, Co@PNC and Ni@PNC reaches as high as −61.6 dB, −65 dB and −65.1 dB with the matched thickness of 2 mm, 2.5 mm and 3.5 mm, and the effective bandwidths are 5.3 GHz (at 3.4 mm), 6.7 GHz (at 2 mm) and 8.6 GHz (at 2.5 mm), respectively. This strategy provides not only a new guidance in the fabrication of carbon absorbers, but also a comprehension in the structure design and composition control through the chelating ability. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2020.11.043</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Attenuation ; Carbon ; Chelation ; Cobalt ; Composite materials ; Composition ; Coordination ; Dielectric loss ; Impedance matching ; Iron ; Lightweight ; Magnetic fields ; Magnetic particles ; Microstructure ; Microwave absorbers ; N-doped carbon ; Nickel ; Organic polymer composites ; Particulate composites ; Polymer matrix composites ; Porous materials ; Strong microwave absorption</subject><ispartof>Carbon (New York), 2021-03, Vol.173, p.655-666</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-4fb8069b1a0503a601eca3ffd3720e4a1db3f460b54bb00b2946ba47ea02a19c3</citedby><cites>FETCH-LOGICAL-c334t-4fb8069b1a0503a601eca3ffd3720e4a1db3f460b54bb00b2946ba47ea02a19c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2020.11.043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Liu, Panbo</creatorcontrib><creatorcontrib>Gao, Sai</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><creatorcontrib>Zhou, Fengtao</creatorcontrib><creatorcontrib>Liu, Peizhou</creatorcontrib><title>Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers</title><title>Carbon (New York)</title><description>Composition and microstructure are two determinative factors for carbon-based absorbers, therefore, balancing the dual coordination possess a formidable importance in the final performance. In this paper, magnetic particles (Fe, Co and Ni) encapsulated in porous N-doped carbon as lightweight and efficient microwave absorbers are reported. The coordination assembly strategy is firstly used to fabricate metal-organic polymer coordination composites, then, these metal ions are in situ reduced by a carbonization process, resulting in magnetic porous N-doped carbon (Fe@PNC, Co@PNC and Ni@PNC) composites with adjusted composition and porous microstructure. Benefiting from the porous microstructure with large surface area, enhanced polarization loss and the synergetic effects between magnetic and dielectric loss, the composites exhibit unexceptionable attenuation ability. Concretely, the minimum reflection loss for Fe@PNC, Co@PNC and Ni@PNC reaches as high as −61.6 dB, −65 dB and −65.1 dB with the matched thickness of 2 mm, 2.5 mm and 3.5 mm, and the effective bandwidths are 5.3 GHz (at 3.4 mm), 6.7 GHz (at 2 mm) and 8.6 GHz (at 2.5 mm), respectively. This strategy provides not only a new guidance in the fabrication of carbon absorbers, but also a comprehension in the structure design and composition control through the chelating ability. [Display omitted]</description><subject>Attenuation</subject><subject>Carbon</subject><subject>Chelation</subject><subject>Cobalt</subject><subject>Composite materials</subject><subject>Composition</subject><subject>Coordination</subject><subject>Dielectric loss</subject><subject>Impedance matching</subject><subject>Iron</subject><subject>Lightweight</subject><subject>Magnetic fields</subject><subject>Magnetic particles</subject><subject>Microstructure</subject><subject>Microwave absorbers</subject><subject>N-doped carbon</subject><subject>Nickel</subject><subject>Organic polymer composites</subject><subject>Particulate composites</subject><subject>Polymer matrix composites</subject><subject>Porous materials</subject><subject>Strong microwave absorption</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UEtv2zAMFoYVWNb2H-wgYGenpKQ69mXAEOxRoI9LexYkmW5lJJYnyQl67D-vDafXXUiQ34Pgx9g3hDUCllfd2ploQ78WIKYVrkHJT2yF1UYWsqrxM1sBQFWUQsgv7GtK3TSqCtWKvd2Z556yd3wIMYyJ3xdNGKjhiyN3YT-E5DMlfvT5hZumG1Oe8RPgJ5Lpmw_53rsYUo6jy2Mk3obId_75JR9prgt8NAfixqYQLcV0wc5as0t0eern7On3r8ft3-L24c_N9udt4aRUuVCtraCsLRq4BmlKQHJGtm0jNwJIGWysbFUJ9lpZC2BFrUpr1IYMCIO1k-fs--I7xPBvpJR1F8bYTye1UDWWKKoSJ5ZaWPMbKVKrh-j3Jr5qBD2HrTu9RKPnsDWinsKeZD8WGU0fHDxFnZyn3lHjI7msm-D_b_AOLdiNuw</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Liu, Panbo</creator><creator>Gao, Sai</creator><creator>Wang, Yi</creator><creator>Huang, Ying</creator><creator>Zhou, Fengtao</creator><creator>Liu, Peizhou</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202103</creationdate><title>Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers</title><author>Liu, Panbo ; Gao, Sai ; Wang, Yi ; Huang, Ying ; Zhou, Fengtao ; Liu, Peizhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-4fb8069b1a0503a601eca3ffd3720e4a1db3f460b54bb00b2946ba47ea02a19c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Attenuation</topic><topic>Carbon</topic><topic>Chelation</topic><topic>Cobalt</topic><topic>Composite materials</topic><topic>Composition</topic><topic>Coordination</topic><topic>Dielectric loss</topic><topic>Impedance matching</topic><topic>Iron</topic><topic>Lightweight</topic><topic>Magnetic fields</topic><topic>Magnetic particles</topic><topic>Microstructure</topic><topic>Microwave absorbers</topic><topic>N-doped carbon</topic><topic>Nickel</topic><topic>Organic polymer composites</topic><topic>Particulate composites</topic><topic>Polymer matrix composites</topic><topic>Porous materials</topic><topic>Strong microwave absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Panbo</creatorcontrib><creatorcontrib>Gao, Sai</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><creatorcontrib>Zhou, Fengtao</creatorcontrib><creatorcontrib>Liu, Peizhou</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Panbo</au><au>Gao, Sai</au><au>Wang, Yi</au><au>Huang, Ying</au><au>Zhou, Fengtao</au><au>Liu, Peizhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers</atitle><jtitle>Carbon (New York)</jtitle><date>2021-03</date><risdate>2021</risdate><volume>173</volume><spage>655</spage><epage>666</epage><pages>655-666</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Composition and microstructure are two determinative factors for carbon-based absorbers, therefore, balancing the dual coordination possess a formidable importance in the final performance. In this paper, magnetic particles (Fe, Co and Ni) encapsulated in porous N-doped carbon as lightweight and efficient microwave absorbers are reported. The coordination assembly strategy is firstly used to fabricate metal-organic polymer coordination composites, then, these metal ions are in situ reduced by a carbonization process, resulting in magnetic porous N-doped carbon (Fe@PNC, Co@PNC and Ni@PNC) composites with adjusted composition and porous microstructure. Benefiting from the porous microstructure with large surface area, enhanced polarization loss and the synergetic effects between magnetic and dielectric loss, the composites exhibit unexceptionable attenuation ability. Concretely, the minimum reflection loss for Fe@PNC, Co@PNC and Ni@PNC reaches as high as −61.6 dB, −65 dB and −65.1 dB with the matched thickness of 2 mm, 2.5 mm and 3.5 mm, and the effective bandwidths are 5.3 GHz (at 3.4 mm), 6.7 GHz (at 2 mm) and 8.6 GHz (at 2.5 mm), respectively. This strategy provides not only a new guidance in the fabrication of carbon absorbers, but also a comprehension in the structure design and composition control through the chelating ability. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2020.11.043</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2021-03, Vol.173, p.655-666
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2491612861
source Access via ScienceDirect (Elsevier)
subjects Attenuation
Carbon
Chelation
Cobalt
Composite materials
Composition
Coordination
Dielectric loss
Impedance matching
Iron
Lightweight
Magnetic fields
Magnetic particles
Microstructure
Microwave absorbers
N-doped carbon
Nickel
Organic polymer composites
Particulate composites
Polymer matrix composites
Porous materials
Strong microwave absorption
title Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A18%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20porous%20N-doped%20carbon%20composites%20with%20adjusted%20composition%20and%20porous%20microstructure%20for%20lightweight%20microwave%20absorbers&rft.jtitle=Carbon%20(New%20York)&rft.au=Liu,%20Panbo&rft.date=2021-03&rft.volume=173&rft.spage=655&rft.epage=666&rft.pages=655-666&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2020.11.043&rft_dat=%3Cproquest_cross%3E2491612861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491612861&rft_id=info:pmid/&rft_els_id=S0008622320311222&rfr_iscdi=true