Microstructure and corrosion resistance of bone-implanted Mg–Zn–Ca–Sr alloy under different cooling methods

The cooling gradient of Mg–3Zn–1Ca–0.5Sr alloy in cast ingots under different cooling methods (air cooling, warm-water cooling and ice–water-mixture cooling) was examined and the effect of cooling rate on the structure and corrosion properties was studied. The microstructure of the alloy was compose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rare metals 2021-03, Vol.40 (3), p.643-650
Hauptverfasser: Liu, He-Ning, Zhang, Kui, Li, Xing-Gang, Li, Yong-Jun, Ma, Ming-Long, Shi, Guo-Liang, Yuan, Jia-Wei, Wang, Kai-Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 650
container_issue 3
container_start_page 643
container_title Rare metals
container_volume 40
creator Liu, He-Ning
Zhang, Kui
Li, Xing-Gang
Li, Yong-Jun
Ma, Ming-Long
Shi, Guo-Liang
Yuan, Jia-Wei
Wang, Kai-Kun
description The cooling gradient of Mg–3Zn–1Ca–0.5Sr alloy in cast ingots under different cooling methods (air cooling, warm-water cooling and ice–water-mixture cooling) was examined and the effect of cooling rate on the structure and corrosion properties was studied. The microstructure of the alloy was composed of α-Mg, Ca 2 Mg 6 Zn 3 and Mg 17 Sr 2 phases. As the solidification cooling rate increased, the grain was refined, Zn and Sr were less segregated, the distributions of Zn and Sr were more uniform, and corrosion rate was found to first increase and then decrease; this contradicts the findings of recent research. With cooling rate increasing, the number of corroded microcouples comprising second phase and α-Mg increases. More α-Mg participates in corrosion, leading to a layered and deep corrosion pit and an increased corrosion rate. However, as the microstructure became sufficiently dense, the corroded structure protected the deep α-Mg from participating in corrosion, thus reducing the corrosion rate. Graphic abstract
doi_str_mv 10.1007/s12598-020-01368-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491607788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491607788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-64de3270d4048ac9523fe4ec76ca833f6c9b303a06ba4703adc27fa0453c00ce3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhSMEEqVwAVaWWBvGsWMnS1TxJ7ViAWzYWK4zKalSu7WTRXfcgRtyEgxBYsfmzWj03hvpy7JzBpcMQF1FlhdVSSEHCozLkqqDbMJKqahiZXGYdgBGocjZcXYS4xpACClhku0WrQ0-9mGw_RCQGFcT60M6td6RgLGNvXEWiW_I0juk7WbbGddjTRarz_ePV5dkZpI8BWK6zu_J4GoMpG6bBgO6PtX5rnUrssH-zdfxNDtqTBfx7HdOs5fbm-fZPZ0_3j3MrufUclb1VIoaea6gFiBKY6si5w0KtEpaU3LeSFstOXADcmmESkttc9UYEAW3ABb5NLsYe7fB7waMvV77Ibj0UueiYhKUKsvkykfXN4UYsNHb0G5M2GsG-hutHtHqhFb_oNUqhfgYisnsVhj-qv9JfQFcWoDC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491607788</pqid></control><display><type>article</type><title>Microstructure and corrosion resistance of bone-implanted Mg–Zn–Ca–Sr alloy under different cooling methods</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, He-Ning ; Zhang, Kui ; Li, Xing-Gang ; Li, Yong-Jun ; Ma, Ming-Long ; Shi, Guo-Liang ; Yuan, Jia-Wei ; Wang, Kai-Kun</creator><creatorcontrib>Liu, He-Ning ; Zhang, Kui ; Li, Xing-Gang ; Li, Yong-Jun ; Ma, Ming-Long ; Shi, Guo-Liang ; Yuan, Jia-Wei ; Wang, Kai-Kun</creatorcontrib><description>The cooling gradient of Mg–3Zn–1Ca–0.5Sr alloy in cast ingots under different cooling methods (air cooling, warm-water cooling and ice–water-mixture cooling) was examined and the effect of cooling rate on the structure and corrosion properties was studied. The microstructure of the alloy was composed of α-Mg, Ca 2 Mg 6 Zn 3 and Mg 17 Sr 2 phases. As the solidification cooling rate increased, the grain was refined, Zn and Sr were less segregated, the distributions of Zn and Sr were more uniform, and corrosion rate was found to first increase and then decrease; this contradicts the findings of recent research. With cooling rate increasing, the number of corroded microcouples comprising second phase and α-Mg increases. More α-Mg participates in corrosion, leading to a layered and deep corrosion pit and an increased corrosion rate. However, as the microstructure became sufficiently dense, the corroded structure protected the deep α-Mg from participating in corrosion, thus reducing the corrosion rate. Graphic abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-020-01368-7</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Air cooling ; Biomaterials ; Chemistry and Materials Science ; Cooling ; Cooling effects ; Cooling rate ; Corrosion ; Corrosion effects ; Corrosion rate ; Corrosion resistance ; Energy ; Ingot casting ; Liquid cooling ; Magnesium base alloys ; Materials Engineering ; Materials Science ; Metallic Materials ; Microstructure ; Nanoscale Science and Technology ; Physical Chemistry ; Solidification ; Strontium ; Zinc</subject><ispartof>Rare metals, 2021-03, Vol.40 (3), p.643-650</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-64de3270d4048ac9523fe4ec76ca833f6c9b303a06ba4703adc27fa0453c00ce3</citedby><cites>FETCH-LOGICAL-c319t-64de3270d4048ac9523fe4ec76ca833f6c9b303a06ba4703adc27fa0453c00ce3</cites><orcidid>0000-0003-2051-9486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-020-01368-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-020-01368-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, He-Ning</creatorcontrib><creatorcontrib>Zhang, Kui</creatorcontrib><creatorcontrib>Li, Xing-Gang</creatorcontrib><creatorcontrib>Li, Yong-Jun</creatorcontrib><creatorcontrib>Ma, Ming-Long</creatorcontrib><creatorcontrib>Shi, Guo-Liang</creatorcontrib><creatorcontrib>Yuan, Jia-Wei</creatorcontrib><creatorcontrib>Wang, Kai-Kun</creatorcontrib><title>Microstructure and corrosion resistance of bone-implanted Mg–Zn–Ca–Sr alloy under different cooling methods</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>The cooling gradient of Mg–3Zn–1Ca–0.5Sr alloy in cast ingots under different cooling methods (air cooling, warm-water cooling and ice–water-mixture cooling) was examined and the effect of cooling rate on the structure and corrosion properties was studied. The microstructure of the alloy was composed of α-Mg, Ca 2 Mg 6 Zn 3 and Mg 17 Sr 2 phases. As the solidification cooling rate increased, the grain was refined, Zn and Sr were less segregated, the distributions of Zn and Sr were more uniform, and corrosion rate was found to first increase and then decrease; this contradicts the findings of recent research. With cooling rate increasing, the number of corroded microcouples comprising second phase and α-Mg increases. More α-Mg participates in corrosion, leading to a layered and deep corrosion pit and an increased corrosion rate. However, as the microstructure became sufficiently dense, the corroded structure protected the deep α-Mg from participating in corrosion, thus reducing the corrosion rate. Graphic abstract</description><subject>Air cooling</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Cooling rate</subject><subject>Corrosion</subject><subject>Corrosion effects</subject><subject>Corrosion rate</subject><subject>Corrosion resistance</subject><subject>Energy</subject><subject>Ingot casting</subject><subject>Liquid cooling</subject><subject>Magnesium base alloys</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nanoscale Science and Technology</subject><subject>Physical Chemistry</subject><subject>Solidification</subject><subject>Strontium</subject><subject>Zinc</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhSMEEqVwAVaWWBvGsWMnS1TxJ7ViAWzYWK4zKalSu7WTRXfcgRtyEgxBYsfmzWj03hvpy7JzBpcMQF1FlhdVSSEHCozLkqqDbMJKqahiZXGYdgBGocjZcXYS4xpACClhku0WrQ0-9mGw_RCQGFcT60M6td6RgLGNvXEWiW_I0juk7WbbGddjTRarz_ePV5dkZpI8BWK6zu_J4GoMpG6bBgO6PtX5rnUrssH-zdfxNDtqTBfx7HdOs5fbm-fZPZ0_3j3MrufUclb1VIoaea6gFiBKY6si5w0KtEpaU3LeSFstOXADcmmESkttc9UYEAW3ABb5NLsYe7fB7waMvV77Ibj0UueiYhKUKsvkykfXN4UYsNHb0G5M2GsG-hutHtHqhFb_oNUqhfgYisnsVhj-qv9JfQFcWoDC</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Liu, He-Ning</creator><creator>Zhang, Kui</creator><creator>Li, Xing-Gang</creator><creator>Li, Yong-Jun</creator><creator>Ma, Ming-Long</creator><creator>Shi, Guo-Liang</creator><creator>Yuan, Jia-Wei</creator><creator>Wang, Kai-Kun</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2051-9486</orcidid></search><sort><creationdate>20210301</creationdate><title>Microstructure and corrosion resistance of bone-implanted Mg–Zn–Ca–Sr alloy under different cooling methods</title><author>Liu, He-Ning ; Zhang, Kui ; Li, Xing-Gang ; Li, Yong-Jun ; Ma, Ming-Long ; Shi, Guo-Liang ; Yuan, Jia-Wei ; Wang, Kai-Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-64de3270d4048ac9523fe4ec76ca833f6c9b303a06ba4703adc27fa0453c00ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air cooling</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Cooling rate</topic><topic>Corrosion</topic><topic>Corrosion effects</topic><topic>Corrosion rate</topic><topic>Corrosion resistance</topic><topic>Energy</topic><topic>Ingot casting</topic><topic>Liquid cooling</topic><topic>Magnesium base alloys</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nanoscale Science and Technology</topic><topic>Physical Chemistry</topic><topic>Solidification</topic><topic>Strontium</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, He-Ning</creatorcontrib><creatorcontrib>Zhang, Kui</creatorcontrib><creatorcontrib>Li, Xing-Gang</creatorcontrib><creatorcontrib>Li, Yong-Jun</creatorcontrib><creatorcontrib>Ma, Ming-Long</creatorcontrib><creatorcontrib>Shi, Guo-Liang</creatorcontrib><creatorcontrib>Yuan, Jia-Wei</creatorcontrib><creatorcontrib>Wang, Kai-Kun</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, He-Ning</au><au>Zhang, Kui</au><au>Li, Xing-Gang</au><au>Li, Yong-Jun</au><au>Ma, Ming-Long</au><au>Shi, Guo-Liang</au><au>Yuan, Jia-Wei</au><au>Wang, Kai-Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and corrosion resistance of bone-implanted Mg–Zn–Ca–Sr alloy under different cooling methods</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>40</volume><issue>3</issue><spage>643</spage><epage>650</epage><pages>643-650</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>The cooling gradient of Mg–3Zn–1Ca–0.5Sr alloy in cast ingots under different cooling methods (air cooling, warm-water cooling and ice–water-mixture cooling) was examined and the effect of cooling rate on the structure and corrosion properties was studied. The microstructure of the alloy was composed of α-Mg, Ca 2 Mg 6 Zn 3 and Mg 17 Sr 2 phases. As the solidification cooling rate increased, the grain was refined, Zn and Sr were less segregated, the distributions of Zn and Sr were more uniform, and corrosion rate was found to first increase and then decrease; this contradicts the findings of recent research. With cooling rate increasing, the number of corroded microcouples comprising second phase and α-Mg increases. More α-Mg participates in corrosion, leading to a layered and deep corrosion pit and an increased corrosion rate. However, as the microstructure became sufficiently dense, the corroded structure protected the deep α-Mg from participating in corrosion, thus reducing the corrosion rate. Graphic abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-020-01368-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2051-9486</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2021-03, Vol.40 (3), p.643-650
issn 1001-0521
1867-7185
language eng
recordid cdi_proquest_journals_2491607788
source SpringerLink Journals; Alma/SFX Local Collection
subjects Air cooling
Biomaterials
Chemistry and Materials Science
Cooling
Cooling effects
Cooling rate
Corrosion
Corrosion effects
Corrosion rate
Corrosion resistance
Energy
Ingot casting
Liquid cooling
Magnesium base alloys
Materials Engineering
Materials Science
Metallic Materials
Microstructure
Nanoscale Science and Technology
Physical Chemistry
Solidification
Strontium
Zinc
title Microstructure and corrosion resistance of bone-implanted Mg–Zn–Ca–Sr alloy under different cooling methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20corrosion%20resistance%20of%20bone-implanted%20Mg%E2%80%93Zn%E2%80%93Ca%E2%80%93Sr%20alloy%20under%20different%20cooling%20methods&rft.jtitle=Rare%20metals&rft.au=Liu,%20He-Ning&rft.date=2021-03-01&rft.volume=40&rft.issue=3&rft.spage=643&rft.epage=650&rft.pages=643-650&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-020-01368-7&rft_dat=%3Cproquest_cross%3E2491607788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491607788&rft_id=info:pmid/&rfr_iscdi=true