Microstructure and corrosion resistance of bone-implanted Mg–Zn–Ca–Sr alloy under different cooling methods
The cooling gradient of Mg–3Zn–1Ca–0.5Sr alloy in cast ingots under different cooling methods (air cooling, warm-water cooling and ice–water-mixture cooling) was examined and the effect of cooling rate on the structure and corrosion properties was studied. The microstructure of the alloy was compose...
Gespeichert in:
Veröffentlicht in: | Rare metals 2021-03, Vol.40 (3), p.643-650 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 650 |
---|---|
container_issue | 3 |
container_start_page | 643 |
container_title | Rare metals |
container_volume | 40 |
creator | Liu, He-Ning Zhang, Kui Li, Xing-Gang Li, Yong-Jun Ma, Ming-Long Shi, Guo-Liang Yuan, Jia-Wei Wang, Kai-Kun |
description | The cooling gradient of Mg–3Zn–1Ca–0.5Sr alloy in cast ingots under different cooling methods (air cooling, warm-water cooling and ice–water-mixture cooling) was examined and the effect of cooling rate on the structure and corrosion properties was studied. The microstructure of the alloy was composed of α-Mg, Ca
2
Mg
6
Zn
3
and Mg
17
Sr
2
phases. As the solidification cooling rate increased, the grain was refined, Zn and Sr were less segregated, the distributions of Zn and Sr were more uniform, and corrosion rate was found to first increase and then decrease; this contradicts the findings of recent research. With cooling rate increasing, the number of corroded microcouples comprising second phase and α-Mg increases. More α-Mg participates in corrosion, leading to a layered and deep corrosion pit and an increased corrosion rate. However, as the microstructure became sufficiently dense, the corroded structure protected the deep α-Mg from participating in corrosion, thus reducing the corrosion rate.
Graphic abstract |
doi_str_mv | 10.1007/s12598-020-01368-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491607788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491607788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-64de3270d4048ac9523fe4ec76ca833f6c9b303a06ba4703adc27fa0453c00ce3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhSMEEqVwAVaWWBvGsWMnS1TxJ7ViAWzYWK4zKalSu7WTRXfcgRtyEgxBYsfmzWj03hvpy7JzBpcMQF1FlhdVSSEHCozLkqqDbMJKqahiZXGYdgBGocjZcXYS4xpACClhku0WrQ0-9mGw_RCQGFcT60M6td6RgLGNvXEWiW_I0juk7WbbGddjTRarz_ePV5dkZpI8BWK6zu_J4GoMpG6bBgO6PtX5rnUrssH-zdfxNDtqTBfx7HdOs5fbm-fZPZ0_3j3MrufUclb1VIoaea6gFiBKY6si5w0KtEpaU3LeSFstOXADcmmESkttc9UYEAW3ABb5NLsYe7fB7waMvV77Ibj0UueiYhKUKsvkykfXN4UYsNHb0G5M2GsG-hutHtHqhFb_oNUqhfgYisnsVhj-qv9JfQFcWoDC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491607788</pqid></control><display><type>article</type><title>Microstructure and corrosion resistance of bone-implanted Mg–Zn–Ca–Sr alloy under different cooling methods</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, He-Ning ; Zhang, Kui ; Li, Xing-Gang ; Li, Yong-Jun ; Ma, Ming-Long ; Shi, Guo-Liang ; Yuan, Jia-Wei ; Wang, Kai-Kun</creator><creatorcontrib>Liu, He-Ning ; Zhang, Kui ; Li, Xing-Gang ; Li, Yong-Jun ; Ma, Ming-Long ; Shi, Guo-Liang ; Yuan, Jia-Wei ; Wang, Kai-Kun</creatorcontrib><description>The cooling gradient of Mg–3Zn–1Ca–0.5Sr alloy in cast ingots under different cooling methods (air cooling, warm-water cooling and ice–water-mixture cooling) was examined and the effect of cooling rate on the structure and corrosion properties was studied. The microstructure of the alloy was composed of α-Mg, Ca
2
Mg
6
Zn
3
and Mg
17
Sr
2
phases. As the solidification cooling rate increased, the grain was refined, Zn and Sr were less segregated, the distributions of Zn and Sr were more uniform, and corrosion rate was found to first increase and then decrease; this contradicts the findings of recent research. With cooling rate increasing, the number of corroded microcouples comprising second phase and α-Mg increases. More α-Mg participates in corrosion, leading to a layered and deep corrosion pit and an increased corrosion rate. However, as the microstructure became sufficiently dense, the corroded structure protected the deep α-Mg from participating in corrosion, thus reducing the corrosion rate.
Graphic abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-020-01368-7</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Air cooling ; Biomaterials ; Chemistry and Materials Science ; Cooling ; Cooling effects ; Cooling rate ; Corrosion ; Corrosion effects ; Corrosion rate ; Corrosion resistance ; Energy ; Ingot casting ; Liquid cooling ; Magnesium base alloys ; Materials Engineering ; Materials Science ; Metallic Materials ; Microstructure ; Nanoscale Science and Technology ; Physical Chemistry ; Solidification ; Strontium ; Zinc</subject><ispartof>Rare metals, 2021-03, Vol.40 (3), p.643-650</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-64de3270d4048ac9523fe4ec76ca833f6c9b303a06ba4703adc27fa0453c00ce3</citedby><cites>FETCH-LOGICAL-c319t-64de3270d4048ac9523fe4ec76ca833f6c9b303a06ba4703adc27fa0453c00ce3</cites><orcidid>0000-0003-2051-9486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-020-01368-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-020-01368-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, He-Ning</creatorcontrib><creatorcontrib>Zhang, Kui</creatorcontrib><creatorcontrib>Li, Xing-Gang</creatorcontrib><creatorcontrib>Li, Yong-Jun</creatorcontrib><creatorcontrib>Ma, Ming-Long</creatorcontrib><creatorcontrib>Shi, Guo-Liang</creatorcontrib><creatorcontrib>Yuan, Jia-Wei</creatorcontrib><creatorcontrib>Wang, Kai-Kun</creatorcontrib><title>Microstructure and corrosion resistance of bone-implanted Mg–Zn–Ca–Sr alloy under different cooling methods</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>The cooling gradient of Mg–3Zn–1Ca–0.5Sr alloy in cast ingots under different cooling methods (air cooling, warm-water cooling and ice–water-mixture cooling) was examined and the effect of cooling rate on the structure and corrosion properties was studied. The microstructure of the alloy was composed of α-Mg, Ca
2
Mg
6
Zn
3
and Mg
17
Sr
2
phases. As the solidification cooling rate increased, the grain was refined, Zn and Sr were less segregated, the distributions of Zn and Sr were more uniform, and corrosion rate was found to first increase and then decrease; this contradicts the findings of recent research. With cooling rate increasing, the number of corroded microcouples comprising second phase and α-Mg increases. More α-Mg participates in corrosion, leading to a layered and deep corrosion pit and an increased corrosion rate. However, as the microstructure became sufficiently dense, the corroded structure protected the deep α-Mg from participating in corrosion, thus reducing the corrosion rate.
Graphic abstract</description><subject>Air cooling</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Cooling rate</subject><subject>Corrosion</subject><subject>Corrosion effects</subject><subject>Corrosion rate</subject><subject>Corrosion resistance</subject><subject>Energy</subject><subject>Ingot casting</subject><subject>Liquid cooling</subject><subject>Magnesium base alloys</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nanoscale Science and Technology</subject><subject>Physical Chemistry</subject><subject>Solidification</subject><subject>Strontium</subject><subject>Zinc</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhSMEEqVwAVaWWBvGsWMnS1TxJ7ViAWzYWK4zKalSu7WTRXfcgRtyEgxBYsfmzWj03hvpy7JzBpcMQF1FlhdVSSEHCozLkqqDbMJKqahiZXGYdgBGocjZcXYS4xpACClhku0WrQ0-9mGw_RCQGFcT60M6td6RgLGNvXEWiW_I0juk7WbbGddjTRarz_ePV5dkZpI8BWK6zu_J4GoMpG6bBgO6PtX5rnUrssH-zdfxNDtqTBfx7HdOs5fbm-fZPZ0_3j3MrufUclb1VIoaea6gFiBKY6si5w0KtEpaU3LeSFstOXADcmmESkttc9UYEAW3ABb5NLsYe7fB7waMvV77Ibj0UueiYhKUKsvkykfXN4UYsNHb0G5M2GsG-hutHtHqhFb_oNUqhfgYisnsVhj-qv9JfQFcWoDC</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Liu, He-Ning</creator><creator>Zhang, Kui</creator><creator>Li, Xing-Gang</creator><creator>Li, Yong-Jun</creator><creator>Ma, Ming-Long</creator><creator>Shi, Guo-Liang</creator><creator>Yuan, Jia-Wei</creator><creator>Wang, Kai-Kun</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2051-9486</orcidid></search><sort><creationdate>20210301</creationdate><title>Microstructure and corrosion resistance of bone-implanted Mg–Zn–Ca–Sr alloy under different cooling methods</title><author>Liu, He-Ning ; Zhang, Kui ; Li, Xing-Gang ; Li, Yong-Jun ; Ma, Ming-Long ; Shi, Guo-Liang ; Yuan, Jia-Wei ; Wang, Kai-Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-64de3270d4048ac9523fe4ec76ca833f6c9b303a06ba4703adc27fa0453c00ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air cooling</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Cooling rate</topic><topic>Corrosion</topic><topic>Corrosion effects</topic><topic>Corrosion rate</topic><topic>Corrosion resistance</topic><topic>Energy</topic><topic>Ingot casting</topic><topic>Liquid cooling</topic><topic>Magnesium base alloys</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nanoscale Science and Technology</topic><topic>Physical Chemistry</topic><topic>Solidification</topic><topic>Strontium</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, He-Ning</creatorcontrib><creatorcontrib>Zhang, Kui</creatorcontrib><creatorcontrib>Li, Xing-Gang</creatorcontrib><creatorcontrib>Li, Yong-Jun</creatorcontrib><creatorcontrib>Ma, Ming-Long</creatorcontrib><creatorcontrib>Shi, Guo-Liang</creatorcontrib><creatorcontrib>Yuan, Jia-Wei</creatorcontrib><creatorcontrib>Wang, Kai-Kun</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, He-Ning</au><au>Zhang, Kui</au><au>Li, Xing-Gang</au><au>Li, Yong-Jun</au><au>Ma, Ming-Long</au><au>Shi, Guo-Liang</au><au>Yuan, Jia-Wei</au><au>Wang, Kai-Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and corrosion resistance of bone-implanted Mg–Zn–Ca–Sr alloy under different cooling methods</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>40</volume><issue>3</issue><spage>643</spage><epage>650</epage><pages>643-650</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>The cooling gradient of Mg–3Zn–1Ca–0.5Sr alloy in cast ingots under different cooling methods (air cooling, warm-water cooling and ice–water-mixture cooling) was examined and the effect of cooling rate on the structure and corrosion properties was studied. The microstructure of the alloy was composed of α-Mg, Ca
2
Mg
6
Zn
3
and Mg
17
Sr
2
phases. As the solidification cooling rate increased, the grain was refined, Zn and Sr were less segregated, the distributions of Zn and Sr were more uniform, and corrosion rate was found to first increase and then decrease; this contradicts the findings of recent research. With cooling rate increasing, the number of corroded microcouples comprising second phase and α-Mg increases. More α-Mg participates in corrosion, leading to a layered and deep corrosion pit and an increased corrosion rate. However, as the microstructure became sufficiently dense, the corroded structure protected the deep α-Mg from participating in corrosion, thus reducing the corrosion rate.
Graphic abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-020-01368-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2051-9486</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2021-03, Vol.40 (3), p.643-650 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_proquest_journals_2491607788 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Air cooling Biomaterials Chemistry and Materials Science Cooling Cooling effects Cooling rate Corrosion Corrosion effects Corrosion rate Corrosion resistance Energy Ingot casting Liquid cooling Magnesium base alloys Materials Engineering Materials Science Metallic Materials Microstructure Nanoscale Science and Technology Physical Chemistry Solidification Strontium Zinc |
title | Microstructure and corrosion resistance of bone-implanted Mg–Zn–Ca–Sr alloy under different cooling methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20corrosion%20resistance%20of%20bone-implanted%20Mg%E2%80%93Zn%E2%80%93Ca%E2%80%93Sr%20alloy%20under%20different%20cooling%20methods&rft.jtitle=Rare%20metals&rft.au=Liu,%20He-Ning&rft.date=2021-03-01&rft.volume=40&rft.issue=3&rft.spage=643&rft.epage=650&rft.pages=643-650&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-020-01368-7&rft_dat=%3Cproquest_cross%3E2491607788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491607788&rft_id=info:pmid/&rfr_iscdi=true |