Liposomal Encapsulation of Oleuropein and an Olive Leaf Extract: Molecular Interactions, Antioxidant Effects and Applications in Model Food Systems
The influence of actively/passively encapsulated oleuropein on DPPC liposomes thermal and structural properties, and its antioxidant capacity against lipid peroxidation were investigated. Also, an oleuropein-rich olive leaf extract was encapsulated in soy phosphatidylcholine (PL-90 g) and incorporat...
Gespeichert in:
Veröffentlicht in: | Food biophysics 2021-03, Vol.16 (1), p.84-97 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 97 |
---|---|
container_issue | 1 |
container_start_page | 84 |
container_title | Food biophysics |
container_volume | 16 |
creator | González-Ortega, Rodrigo Šturm, Luka Skrt, Mihaela Di Mattia, Carla Daniela Pittia, Paola Poklar Ulrih, Nataša |
description | The influence of actively/passively encapsulated oleuropein on DPPC liposomes thermal and structural properties, and its antioxidant capacity against lipid peroxidation were investigated. Also, an oleuropein-rich olive leaf extract was encapsulated in soy phosphatidylcholine (PL-90 g) and incorporated in model and commercial drinks. Oleuropein induced a concentration-dependent broadening and splitting of the gel-to-liquid phase transition temperature. Fluorescence measurements revealed a fluidizing effect on liposomes below their gel-to-liquid phase transition temperature, and a higher lipid ordering above, especially to active encapsulation. Oleuropein also showed an antioxidant effect against lipid peroxidation in PL-90 g liposomes. PL-90 g Liposomes with olive leaf extract showed a mean diameter of 405 ± 4 nm and oleuropein encapsulation efficiency of 34% and delayed oleuropein degradation at pH 2.0 and 2.8 model drinks. In conclusion, greater effects were observed on the structure and fluidity of DPPC liposomes when oleuropein was actively encapsulated, while its incorporation into acidic foods in encapsulated form could enhance its stability. |
doi_str_mv | 10.1007/s11483-020-09650-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491442413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491442413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-bf815f51aa199238d20cb80adf7c16868c56529821ab70f6206c25293e76247b3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYsoOKd_wKeAr1aTNE1T38bodNCxB_U5ZGkiHV1Sk1Tc7_APm62ibz5c7uVwvnPhJMk1gncIwuLeI0RYlkIMU1jSHKb7k2SC8rxIEaP09PfO2Xly4f0WQkIIhZPkq2576-1OdKAyUvR-6ERorQFWg3WnBmd71RogTBMnKu2HArUSGlSfwQkZHsDKdkpGyoGlCeqgRdzfgpmJx2fbCBNApbWSwR9jZn3ftfL4xIMYvbKN6sDC2gY8731QO3-ZnGnReXX1s6fJ66J6mT-l9fpxOZ_VqcxoFtKNZijXORIClSXOWIOh3DAoGl1IRBllMqc5LhlGYlNATTGkEkchUwXFpNhk0-RmzO2dfR-UD3xrB2fiS45JiQjBBGXRhUeXdNZ7pzTvXbsTbs8R5Ify-Vg-j-XzY_l8H6FshHw0mzfl_qL_ob4BNQWJSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491442413</pqid></control><display><type>article</type><title>Liposomal Encapsulation of Oleuropein and an Olive Leaf Extract: Molecular Interactions, Antioxidant Effects and Applications in Model Food Systems</title><source>SpringerLink Journals</source><creator>González-Ortega, Rodrigo ; Šturm, Luka ; Skrt, Mihaela ; Di Mattia, Carla Daniela ; Pittia, Paola ; Poklar Ulrih, Nataša</creator><creatorcontrib>González-Ortega, Rodrigo ; Šturm, Luka ; Skrt, Mihaela ; Di Mattia, Carla Daniela ; Pittia, Paola ; Poklar Ulrih, Nataša</creatorcontrib><description>The influence of actively/passively encapsulated oleuropein on DPPC liposomes thermal and structural properties, and its antioxidant capacity against lipid peroxidation were investigated. Also, an oleuropein-rich olive leaf extract was encapsulated in soy phosphatidylcholine (PL-90 g) and incorporated in model and commercial drinks. Oleuropein induced a concentration-dependent broadening and splitting of the gel-to-liquid phase transition temperature. Fluorescence measurements revealed a fluidizing effect on liposomes below their gel-to-liquid phase transition temperature, and a higher lipid ordering above, especially to active encapsulation. Oleuropein also showed an antioxidant effect against lipid peroxidation in PL-90 g liposomes. PL-90 g Liposomes with olive leaf extract showed a mean diameter of 405 ± 4 nm and oleuropein encapsulation efficiency of 34% and delayed oleuropein degradation at pH 2.0 and 2.8 model drinks. In conclusion, greater effects were observed on the structure and fluidity of DPPC liposomes when oleuropein was actively encapsulated, while its incorporation into acidic foods in encapsulated form could enhance its stability.</description><identifier>ISSN: 1557-1858</identifier><identifier>EISSN: 1557-1866</identifier><identifier>DOI: 10.1007/s11483-020-09650-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytical Chemistry ; Antioxidants ; Biological and Medical Physics ; Biophysics ; Chemistry ; Chemistry and Materials Science ; Diameters ; Encapsulation ; Fluidity ; Fluidizing ; Fluorescence ; Food Science ; Leaves ; Lecithin ; Lipid peroxidation ; Lipids ; Liposomes ; Liquid phases ; Molecular interactions ; Oleuropein ; Original Article ; Peroxidation ; Phase transitions ; Phosphatidylcholine ; Plant extracts ; Transition temperature ; Transition temperatures</subject><ispartof>Food biophysics, 2021-03, Vol.16 (1), p.84-97</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-bf815f51aa199238d20cb80adf7c16868c56529821ab70f6206c25293e76247b3</citedby><cites>FETCH-LOGICAL-c363t-bf815f51aa199238d20cb80adf7c16868c56529821ab70f6206c25293e76247b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11483-020-09650-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11483-020-09650-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>González-Ortega, Rodrigo</creatorcontrib><creatorcontrib>Šturm, Luka</creatorcontrib><creatorcontrib>Skrt, Mihaela</creatorcontrib><creatorcontrib>Di Mattia, Carla Daniela</creatorcontrib><creatorcontrib>Pittia, Paola</creatorcontrib><creatorcontrib>Poklar Ulrih, Nataša</creatorcontrib><title>Liposomal Encapsulation of Oleuropein and an Olive Leaf Extract: Molecular Interactions, Antioxidant Effects and Applications in Model Food Systems</title><title>Food biophysics</title><addtitle>Food Biophysics</addtitle><description>The influence of actively/passively encapsulated oleuropein on DPPC liposomes thermal and structural properties, and its antioxidant capacity against lipid peroxidation were investigated. Also, an oleuropein-rich olive leaf extract was encapsulated in soy phosphatidylcholine (PL-90 g) and incorporated in model and commercial drinks. Oleuropein induced a concentration-dependent broadening and splitting of the gel-to-liquid phase transition temperature. Fluorescence measurements revealed a fluidizing effect on liposomes below their gel-to-liquid phase transition temperature, and a higher lipid ordering above, especially to active encapsulation. Oleuropein also showed an antioxidant effect against lipid peroxidation in PL-90 g liposomes. PL-90 g Liposomes with olive leaf extract showed a mean diameter of 405 ± 4 nm and oleuropein encapsulation efficiency of 34% and delayed oleuropein degradation at pH 2.0 and 2.8 model drinks. In conclusion, greater effects were observed on the structure and fluidity of DPPC liposomes when oleuropein was actively encapsulated, while its incorporation into acidic foods in encapsulated form could enhance its stability.</description><subject>Analytical Chemistry</subject><subject>Antioxidants</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Diameters</subject><subject>Encapsulation</subject><subject>Fluidity</subject><subject>Fluidizing</subject><subject>Fluorescence</subject><subject>Food Science</subject><subject>Leaves</subject><subject>Lecithin</subject><subject>Lipid peroxidation</subject><subject>Lipids</subject><subject>Liposomes</subject><subject>Liquid phases</subject><subject>Molecular interactions</subject><subject>Oleuropein</subject><subject>Original Article</subject><subject>Peroxidation</subject><subject>Phase transitions</subject><subject>Phosphatidylcholine</subject><subject>Plant extracts</subject><subject>Transition temperature</subject><subject>Transition temperatures</subject><issn>1557-1858</issn><issn>1557-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kFFLwzAUhYsoOKd_wKeAr1aTNE1T38bodNCxB_U5ZGkiHV1Sk1Tc7_APm62ibz5c7uVwvnPhJMk1gncIwuLeI0RYlkIMU1jSHKb7k2SC8rxIEaP09PfO2Xly4f0WQkIIhZPkq2576-1OdKAyUvR-6ERorQFWg3WnBmd71RogTBMnKu2HArUSGlSfwQkZHsDKdkpGyoGlCeqgRdzfgpmJx2fbCBNApbWSwR9jZn3ftfL4xIMYvbKN6sDC2gY8731QO3-ZnGnReXX1s6fJ66J6mT-l9fpxOZ_VqcxoFtKNZijXORIClSXOWIOh3DAoGl1IRBllMqc5LhlGYlNATTGkEkchUwXFpNhk0-RmzO2dfR-UD3xrB2fiS45JiQjBBGXRhUeXdNZ7pzTvXbsTbs8R5Ify-Vg-j-XzY_l8H6FshHw0mzfl_qL_ob4BNQWJSA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>González-Ortega, Rodrigo</creator><creator>Šturm, Luka</creator><creator>Skrt, Mihaela</creator><creator>Di Mattia, Carla Daniela</creator><creator>Pittia, Paola</creator><creator>Poklar Ulrih, Nataša</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7T7</scope><scope>7X2</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20210301</creationdate><title>Liposomal Encapsulation of Oleuropein and an Olive Leaf Extract: Molecular Interactions, Antioxidant Effects and Applications in Model Food Systems</title><author>González-Ortega, Rodrigo ; Šturm, Luka ; Skrt, Mihaela ; Di Mattia, Carla Daniela ; Pittia, Paola ; Poklar Ulrih, Nataša</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-bf815f51aa199238d20cb80adf7c16868c56529821ab70f6206c25293e76247b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical Chemistry</topic><topic>Antioxidants</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Diameters</topic><topic>Encapsulation</topic><topic>Fluidity</topic><topic>Fluidizing</topic><topic>Fluorescence</topic><topic>Food Science</topic><topic>Leaves</topic><topic>Lecithin</topic><topic>Lipid peroxidation</topic><topic>Lipids</topic><topic>Liposomes</topic><topic>Liquid phases</topic><topic>Molecular interactions</topic><topic>Oleuropein</topic><topic>Original Article</topic><topic>Peroxidation</topic><topic>Phase transitions</topic><topic>Phosphatidylcholine</topic><topic>Plant extracts</topic><topic>Transition temperature</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Ortega, Rodrigo</creatorcontrib><creatorcontrib>Šturm, Luka</creatorcontrib><creatorcontrib>Skrt, Mihaela</creatorcontrib><creatorcontrib>Di Mattia, Carla Daniela</creatorcontrib><creatorcontrib>Pittia, Paola</creatorcontrib><creatorcontrib>Poklar Ulrih, Nataša</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Food biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Ortega, Rodrigo</au><au>Šturm, Luka</au><au>Skrt, Mihaela</au><au>Di Mattia, Carla Daniela</au><au>Pittia, Paola</au><au>Poklar Ulrih, Nataša</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liposomal Encapsulation of Oleuropein and an Olive Leaf Extract: Molecular Interactions, Antioxidant Effects and Applications in Model Food Systems</atitle><jtitle>Food biophysics</jtitle><stitle>Food Biophysics</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>16</volume><issue>1</issue><spage>84</spage><epage>97</epage><pages>84-97</pages><issn>1557-1858</issn><eissn>1557-1866</eissn><abstract>The influence of actively/passively encapsulated oleuropein on DPPC liposomes thermal and structural properties, and its antioxidant capacity against lipid peroxidation were investigated. Also, an oleuropein-rich olive leaf extract was encapsulated in soy phosphatidylcholine (PL-90 g) and incorporated in model and commercial drinks. Oleuropein induced a concentration-dependent broadening and splitting of the gel-to-liquid phase transition temperature. Fluorescence measurements revealed a fluidizing effect on liposomes below their gel-to-liquid phase transition temperature, and a higher lipid ordering above, especially to active encapsulation. Oleuropein also showed an antioxidant effect against lipid peroxidation in PL-90 g liposomes. PL-90 g Liposomes with olive leaf extract showed a mean diameter of 405 ± 4 nm and oleuropein encapsulation efficiency of 34% and delayed oleuropein degradation at pH 2.0 and 2.8 model drinks. In conclusion, greater effects were observed on the structure and fluidity of DPPC liposomes when oleuropein was actively encapsulated, while its incorporation into acidic foods in encapsulated form could enhance its stability.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11483-020-09650-y</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1557-1858 |
ispartof | Food biophysics, 2021-03, Vol.16 (1), p.84-97 |
issn | 1557-1858 1557-1866 |
language | eng |
recordid | cdi_proquest_journals_2491442413 |
source | SpringerLink Journals |
subjects | Analytical Chemistry Antioxidants Biological and Medical Physics Biophysics Chemistry Chemistry and Materials Science Diameters Encapsulation Fluidity Fluidizing Fluorescence Food Science Leaves Lecithin Lipid peroxidation Lipids Liposomes Liquid phases Molecular interactions Oleuropein Original Article Peroxidation Phase transitions Phosphatidylcholine Plant extracts Transition temperature Transition temperatures |
title | Liposomal Encapsulation of Oleuropein and an Olive Leaf Extract: Molecular Interactions, Antioxidant Effects and Applications in Model Food Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liposomal%20Encapsulation%20of%20Oleuropein%20and%20an%20Olive%20Leaf%20Extract:%20Molecular%20Interactions,%20Antioxidant%20Effects%20and%20Applications%20in%20Model%20Food%20Systems&rft.jtitle=Food%20biophysics&rft.au=Gonz%C3%A1lez-Ortega,%20Rodrigo&rft.date=2021-03-01&rft.volume=16&rft.issue=1&rft.spage=84&rft.epage=97&rft.pages=84-97&rft.issn=1557-1858&rft.eissn=1557-1866&rft_id=info:doi/10.1007/s11483-020-09650-y&rft_dat=%3Cproquest_cross%3E2491442413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491442413&rft_id=info:pmid/&rfr_iscdi=true |