The decomposition process in high-purity Al-1.7 at.% Cu alloys with trace elements: preservation of quenched-in vacancies by In, Sn and Pb influencing the θ′ formation
Aluminium-copper alloys of the 2xxx type receive their excellent mechanical properties by the formation of copper-rich precipitates during hardening. Size, distribution and crystal structure of the formed precipitates determine the final strength of those alloys. Adding traces of certain elements, w...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2021-05, Vol.56 (14), p.8717-8731 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8731 |
---|---|
container_issue | 14 |
container_start_page | 8717 |
container_title | Journal of materials science |
container_volume | 56 |
creator | Staab, Torsten E. M. Lotter, Frank Mühle, Uwe Elsayed, Mohamed Petschke, Danny Schubert, Thomas Ibrahim, Alaa M. Krause-Rehberg, Reinhard Kieback, Bernd |
description | Aluminium-copper alloys of the 2xxx type receive their excellent mechanical properties by the formation of copper-rich precipitates during hardening. Size, distribution and crystal structure of the formed precipitates determine the final strength of those alloys. Adding traces of certain elements, which bind to vacancies, significantly influences the decomposition behaviour, i.e. the diffusion of the copper atoms. For high-purity ternary alloys (Al-1.7 at.% Cu-X), we investigate the interaction of copper and trace element atoms (X=In, Sn, and Pb) with quenched-in vacancies by Positron Annihilation Lifetime Spectroscopy (PALS). By employing Vickers microhardness, Differential Scanning Calorimetry (DSC) and Small Angle X-Ray Scattering (SAXS) we obtain a comprehensive picture of the decomposition process: opposite to predicted binding energies to vacancies by ab-initio calculations we find during ageing at room and elevated temperature a more retarded clustering of copper in the presence of In rather than for Sn additions, while Pb, having the highest predicted binding to vacancies, shows nearly no retarding effect compared to pure Al-Cu. If the latter would be due to a limited solubility of lead, it had to be below 2 ppm. Transmission Electron Microscopy (TEM) as imaging method complements our findings. Annealing the quenched Al-1.7 at.% Cu-X-alloys containing 100 ppm In or Sn at
150
∘
C
leads to finely distributed
θ
′
-precipitates on the nanoscale, since due to the trace additions the formation temperature of
θ
′
is lowered by more than
100
∘
C
. According to TEM small agglomerates of trace elements (In, Sn) may support the early nucleation for the
θ
′
-precipitates. |
doi_str_mv | 10.1007/s10853-020-05742-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491440232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491440232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d2d78edd07d540a28df86031b420f56bf9872c9adf1536af1b6a56605689ec7a3</originalsourceid><addsrcrecordid>eNp9kb1uFDEURi0EEkvCC1BZQnR4ubZnPDN00YpApEhEItSWxz87jmbtxfYm2o5HSU9HRc0D8BA8Cc4uEh3Vbc537tX9EHpBYUkBujeZQt9yAgwItF3DyPAILWjbcdL0wB-jBQBjhDWCPkXPcr4BqBijC_TterLYWB0325h98THgbYra5ox9wJNfT2S7S77s8dlM6LL7ea_K8hVe7bCa57jP-M6XCZektMV2thsbSn5bFTbbdKsOvujwl50NerKGVOet0ipobzMe9_givMafAlbB4KuxbnTzA-nDGpd6168fv79-xy6mzcF0ip44NWf7_O88QZ_P312vPpDLj-8vVmeXRHPBCzHMdL01BjrTNqBYb1wvgNOxYeBaMbqh75gelHG05UI5OgrVCgGt6AerO8VP0Mujt36iXp6LvIm7FOpKyZqBNg0wzirFjpROMedkndwmv1FpLynIh1LksRRZS5GHUuRQQ_wYyhUOa5v-qf-T-gNyWJNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491440232</pqid></control><display><type>article</type><title>The decomposition process in high-purity Al-1.7 at.% Cu alloys with trace elements: preservation of quenched-in vacancies by In, Sn and Pb influencing the θ′ formation</title><source>SpringerNature Journals</source><creator>Staab, Torsten E. M. ; Lotter, Frank ; Mühle, Uwe ; Elsayed, Mohamed ; Petschke, Danny ; Schubert, Thomas ; Ibrahim, Alaa M. ; Krause-Rehberg, Reinhard ; Kieback, Bernd</creator><creatorcontrib>Staab, Torsten E. M. ; Lotter, Frank ; Mühle, Uwe ; Elsayed, Mohamed ; Petschke, Danny ; Schubert, Thomas ; Ibrahim, Alaa M. ; Krause-Rehberg, Reinhard ; Kieback, Bernd</creatorcontrib><description>Aluminium-copper alloys of the 2xxx type receive their excellent mechanical properties by the formation of copper-rich precipitates during hardening. Size, distribution and crystal structure of the formed precipitates determine the final strength of those alloys. Adding traces of certain elements, which bind to vacancies, significantly influences the decomposition behaviour, i.e. the diffusion of the copper atoms. For high-purity ternary alloys (Al-1.7 at.% Cu-X), we investigate the interaction of copper and trace element atoms (X=In, Sn, and Pb) with quenched-in vacancies by Positron Annihilation Lifetime Spectroscopy (PALS). By employing Vickers microhardness, Differential Scanning Calorimetry (DSC) and Small Angle X-Ray Scattering (SAXS) we obtain a comprehensive picture of the decomposition process: opposite to predicted binding energies to vacancies by ab-initio calculations we find during ageing at room and elevated temperature a more retarded clustering of copper in the presence of In rather than for Sn additions, while Pb, having the highest predicted binding to vacancies, shows nearly no retarding effect compared to pure Al-Cu. If the latter would be due to a limited solubility of lead, it had to be below 2 ppm. Transmission Electron Microscopy (TEM) as imaging method complements our findings. Annealing the quenched Al-1.7 at.% Cu-X-alloys containing 100 ppm In or Sn at
150
∘
C
leads to finely distributed
θ
′
-precipitates on the nanoscale, since due to the trace additions the formation temperature of
θ
′
is lowered by more than
100
∘
C
. According to TEM small agglomerates of trace elements (In, Sn) may support the early nucleation for the
θ
′
-precipitates.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-05742-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloying elements ; Aluminum base alloys ; Characterization and Evaluation of Materials ; Chemical precipitation ; Chemistry and Materials Science ; Classical Mechanics ; Clustering ; Copper ; Crystal structure ; Crystallography and Scattering Methods ; Decomposition ; Diamond pyramid hardness ; Diffusion ; High temperature ; Lead ; Materials Science ; Mechanical properties ; Metals & Corrosion ; Nucleation ; Polymer Sciences ; Positron annihilation ; Precipitates ; Purity ; Quenching ; Small angle X ray scattering ; Solid Mechanics ; Ternary alloys ; Tin ; Trace elements ; Transmission electron microscopy ; Vacancies</subject><ispartof>Journal of materials science, 2021-05, Vol.56 (14), p.8717-8731</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d2d78edd07d540a28df86031b420f56bf9872c9adf1536af1b6a56605689ec7a3</citedby><cites>FETCH-LOGICAL-c363t-d2d78edd07d540a28df86031b420f56bf9872c9adf1536af1b6a56605689ec7a3</cites><orcidid>0000-0002-1868-3909 ; 0000-0002-3129-8167 ; 0000-0002-7872-0484 ; 0000-0002-4582-8907 ; 0000-0002-6185-2974 ; 0000-0001-9680-0229 ; 0000-0001-9811-5575 ; 0000-0001-6238-0705 ; 0000-0001-7138-8397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-020-05742-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-020-05742-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Staab, Torsten E. M.</creatorcontrib><creatorcontrib>Lotter, Frank</creatorcontrib><creatorcontrib>Mühle, Uwe</creatorcontrib><creatorcontrib>Elsayed, Mohamed</creatorcontrib><creatorcontrib>Petschke, Danny</creatorcontrib><creatorcontrib>Schubert, Thomas</creatorcontrib><creatorcontrib>Ibrahim, Alaa M.</creatorcontrib><creatorcontrib>Krause-Rehberg, Reinhard</creatorcontrib><creatorcontrib>Kieback, Bernd</creatorcontrib><title>The decomposition process in high-purity Al-1.7 at.% Cu alloys with trace elements: preservation of quenched-in vacancies by In, Sn and Pb influencing the θ′ formation</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Aluminium-copper alloys of the 2xxx type receive their excellent mechanical properties by the formation of copper-rich precipitates during hardening. Size, distribution and crystal structure of the formed precipitates determine the final strength of those alloys. Adding traces of certain elements, which bind to vacancies, significantly influences the decomposition behaviour, i.e. the diffusion of the copper atoms. For high-purity ternary alloys (Al-1.7 at.% Cu-X), we investigate the interaction of copper and trace element atoms (X=In, Sn, and Pb) with quenched-in vacancies by Positron Annihilation Lifetime Spectroscopy (PALS). By employing Vickers microhardness, Differential Scanning Calorimetry (DSC) and Small Angle X-Ray Scattering (SAXS) we obtain a comprehensive picture of the decomposition process: opposite to predicted binding energies to vacancies by ab-initio calculations we find during ageing at room and elevated temperature a more retarded clustering of copper in the presence of In rather than for Sn additions, while Pb, having the highest predicted binding to vacancies, shows nearly no retarding effect compared to pure Al-Cu. If the latter would be due to a limited solubility of lead, it had to be below 2 ppm. Transmission Electron Microscopy (TEM) as imaging method complements our findings. Annealing the quenched Al-1.7 at.% Cu-X-alloys containing 100 ppm In or Sn at
150
∘
C
leads to finely distributed
θ
′
-precipitates on the nanoscale, since due to the trace additions the formation temperature of
θ
′
is lowered by more than
100
∘
C
. According to TEM small agglomerates of trace elements (In, Sn) may support the early nucleation for the
θ
′
-precipitates.</description><subject>Alloying elements</subject><subject>Aluminum base alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical precipitation</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Clustering</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Crystallography and Scattering Methods</subject><subject>Decomposition</subject><subject>Diamond pyramid hardness</subject><subject>Diffusion</subject><subject>High temperature</subject><subject>Lead</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metals & Corrosion</subject><subject>Nucleation</subject><subject>Polymer Sciences</subject><subject>Positron annihilation</subject><subject>Precipitates</subject><subject>Purity</subject><subject>Quenching</subject><subject>Small angle X ray scattering</subject><subject>Solid Mechanics</subject><subject>Ternary alloys</subject><subject>Tin</subject><subject>Trace elements</subject><subject>Transmission electron microscopy</subject><subject>Vacancies</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kb1uFDEURi0EEkvCC1BZQnR4ubZnPDN00YpApEhEItSWxz87jmbtxfYm2o5HSU9HRc0D8BA8Cc4uEh3Vbc537tX9EHpBYUkBujeZQt9yAgwItF3DyPAILWjbcdL0wB-jBQBjhDWCPkXPcr4BqBijC_TterLYWB0325h98THgbYra5ox9wJNfT2S7S77s8dlM6LL7ea_K8hVe7bCa57jP-M6XCZektMV2thsbSn5bFTbbdKsOvujwl50NerKGVOet0ipobzMe9_givMafAlbB4KuxbnTzA-nDGpd6168fv79-xy6mzcF0ip44NWf7_O88QZ_P312vPpDLj-8vVmeXRHPBCzHMdL01BjrTNqBYb1wvgNOxYeBaMbqh75gelHG05UI5OgrVCgGt6AerO8VP0Mujt36iXp6LvIm7FOpKyZqBNg0wzirFjpROMedkndwmv1FpLynIh1LksRRZS5GHUuRQQ_wYyhUOa5v-qf-T-gNyWJNE</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Staab, Torsten E. M.</creator><creator>Lotter, Frank</creator><creator>Mühle, Uwe</creator><creator>Elsayed, Mohamed</creator><creator>Petschke, Danny</creator><creator>Schubert, Thomas</creator><creator>Ibrahim, Alaa M.</creator><creator>Krause-Rehberg, Reinhard</creator><creator>Kieback, Bernd</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1868-3909</orcidid><orcidid>https://orcid.org/0000-0002-3129-8167</orcidid><orcidid>https://orcid.org/0000-0002-7872-0484</orcidid><orcidid>https://orcid.org/0000-0002-4582-8907</orcidid><orcidid>https://orcid.org/0000-0002-6185-2974</orcidid><orcidid>https://orcid.org/0000-0001-9680-0229</orcidid><orcidid>https://orcid.org/0000-0001-9811-5575</orcidid><orcidid>https://orcid.org/0000-0001-6238-0705</orcidid><orcidid>https://orcid.org/0000-0001-7138-8397</orcidid></search><sort><creationdate>20210501</creationdate><title>The decomposition process in high-purity Al-1.7 at.% Cu alloys with trace elements: preservation of quenched-in vacancies by In, Sn and Pb influencing the θ′ formation</title><author>Staab, Torsten E. M. ; Lotter, Frank ; Mühle, Uwe ; Elsayed, Mohamed ; Petschke, Danny ; Schubert, Thomas ; Ibrahim, Alaa M. ; Krause-Rehberg, Reinhard ; Kieback, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d2d78edd07d540a28df86031b420f56bf9872c9adf1536af1b6a56605689ec7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloying elements</topic><topic>Aluminum base alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical precipitation</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Clustering</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Crystallography and Scattering Methods</topic><topic>Decomposition</topic><topic>Diamond pyramid hardness</topic><topic>Diffusion</topic><topic>High temperature</topic><topic>Lead</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metals & Corrosion</topic><topic>Nucleation</topic><topic>Polymer Sciences</topic><topic>Positron annihilation</topic><topic>Precipitates</topic><topic>Purity</topic><topic>Quenching</topic><topic>Small angle X ray scattering</topic><topic>Solid Mechanics</topic><topic>Ternary alloys</topic><topic>Tin</topic><topic>Trace elements</topic><topic>Transmission electron microscopy</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Staab, Torsten E. M.</creatorcontrib><creatorcontrib>Lotter, Frank</creatorcontrib><creatorcontrib>Mühle, Uwe</creatorcontrib><creatorcontrib>Elsayed, Mohamed</creatorcontrib><creatorcontrib>Petschke, Danny</creatorcontrib><creatorcontrib>Schubert, Thomas</creatorcontrib><creatorcontrib>Ibrahim, Alaa M.</creatorcontrib><creatorcontrib>Krause-Rehberg, Reinhard</creatorcontrib><creatorcontrib>Kieback, Bernd</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Staab, Torsten E. M.</au><au>Lotter, Frank</au><au>Mühle, Uwe</au><au>Elsayed, Mohamed</au><au>Petschke, Danny</au><au>Schubert, Thomas</au><au>Ibrahim, Alaa M.</au><au>Krause-Rehberg, Reinhard</au><au>Kieback, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The decomposition process in high-purity Al-1.7 at.% Cu alloys with trace elements: preservation of quenched-in vacancies by In, Sn and Pb influencing the θ′ formation</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>56</volume><issue>14</issue><spage>8717</spage><epage>8731</epage><pages>8717-8731</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Aluminium-copper alloys of the 2xxx type receive their excellent mechanical properties by the formation of copper-rich precipitates during hardening. Size, distribution and crystal structure of the formed precipitates determine the final strength of those alloys. Adding traces of certain elements, which bind to vacancies, significantly influences the decomposition behaviour, i.e. the diffusion of the copper atoms. For high-purity ternary alloys (Al-1.7 at.% Cu-X), we investigate the interaction of copper and trace element atoms (X=In, Sn, and Pb) with quenched-in vacancies by Positron Annihilation Lifetime Spectroscopy (PALS). By employing Vickers microhardness, Differential Scanning Calorimetry (DSC) and Small Angle X-Ray Scattering (SAXS) we obtain a comprehensive picture of the decomposition process: opposite to predicted binding energies to vacancies by ab-initio calculations we find during ageing at room and elevated temperature a more retarded clustering of copper in the presence of In rather than for Sn additions, while Pb, having the highest predicted binding to vacancies, shows nearly no retarding effect compared to pure Al-Cu. If the latter would be due to a limited solubility of lead, it had to be below 2 ppm. Transmission Electron Microscopy (TEM) as imaging method complements our findings. Annealing the quenched Al-1.7 at.% Cu-X-alloys containing 100 ppm In or Sn at
150
∘
C
leads to finely distributed
θ
′
-precipitates on the nanoscale, since due to the trace additions the formation temperature of
θ
′
is lowered by more than
100
∘
C
. According to TEM small agglomerates of trace elements (In, Sn) may support the early nucleation for the
θ
′
-precipitates.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-05742-9</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1868-3909</orcidid><orcidid>https://orcid.org/0000-0002-3129-8167</orcidid><orcidid>https://orcid.org/0000-0002-7872-0484</orcidid><orcidid>https://orcid.org/0000-0002-4582-8907</orcidid><orcidid>https://orcid.org/0000-0002-6185-2974</orcidid><orcidid>https://orcid.org/0000-0001-9680-0229</orcidid><orcidid>https://orcid.org/0000-0001-9811-5575</orcidid><orcidid>https://orcid.org/0000-0001-6238-0705</orcidid><orcidid>https://orcid.org/0000-0001-7138-8397</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2021-05, Vol.56 (14), p.8717-8731 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2491440232 |
source | SpringerNature Journals |
subjects | Alloying elements Aluminum base alloys Characterization and Evaluation of Materials Chemical precipitation Chemistry and Materials Science Classical Mechanics Clustering Copper Crystal structure Crystallography and Scattering Methods Decomposition Diamond pyramid hardness Diffusion High temperature Lead Materials Science Mechanical properties Metals & Corrosion Nucleation Polymer Sciences Positron annihilation Precipitates Purity Quenching Small angle X ray scattering Solid Mechanics Ternary alloys Tin Trace elements Transmission electron microscopy Vacancies |
title | The decomposition process in high-purity Al-1.7 at.% Cu alloys with trace elements: preservation of quenched-in vacancies by In, Sn and Pb influencing the θ′ formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A25%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20decomposition%20process%20in%20high-purity%20Al-1.7%C2%A0at.%25%20Cu%20alloys%20with%20trace%20elements:%20preservation%20of%20quenched-in%20vacancies%20by%20In,%20Sn%20and%20Pb%20influencing%20the%20%CE%B8%E2%80%B2%20formation&rft.jtitle=Journal%20of%20materials%20science&rft.au=Staab,%20Torsten%20E.%20M.&rft.date=2021-05-01&rft.volume=56&rft.issue=14&rft.spage=8717&rft.epage=8731&rft.pages=8717-8731&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-05742-9&rft_dat=%3Cproquest_cross%3E2491440232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491440232&rft_id=info:pmid/&rfr_iscdi=true |