Effect of sintering temperature on the structural, morphological, electrical, and magnetic properties of Ni–Cu–Zn and Ni–Cu–Zn–Sc ferrites

Polycrystalline Ni 0.3 Cu 0.2 Zn 0.5 Fe 2 O 4 and Ni 0.3 Cu 0.2 Zn 0.5 Sc 0.05 Fe 1.95 O 4 compounds have been prepared by standard solid-state reaction technique and sintered at 1000, 1100, 1150, 1200, and 1250 °C for 5 h in air. The effect of sintering temperature on the structural, morphological,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2021, Vol.32 (2), p.2505-2523
Hauptverfasser: Harun-Or-Rashid, Md, Islam, M. Nazrul, Arifuzzaman, M., Hossain, A. K. M. Akther
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2523
container_issue 2
container_start_page 2505
container_title Journal of materials science. Materials in electronics
container_volume 32
creator Harun-Or-Rashid, Md
Islam, M. Nazrul
Arifuzzaman, M.
Hossain, A. K. M. Akther
description Polycrystalline Ni 0.3 Cu 0.2 Zn 0.5 Fe 2 O 4 and Ni 0.3 Cu 0.2 Zn 0.5 Sc 0.05 Fe 1.95 O 4 compounds have been prepared by standard solid-state reaction technique and sintered at 1000, 1100, 1150, 1200, and 1250 °C for 5 h in air. The effect of sintering temperature on the structural, morphological, magnetic, dielectric, and electrical properties of these spinel ferrites has been studied thoroughly and comparatively. Formation of the single-phase cubic spinel structure of these compositions is confirmed by X-ray diffraction analysis. The lattice constant increases with sintering temperature as well as with 5% scandium (Sc 3+ ) doping in Ni–Cu–Zn ferrite. Surface morphology reveals that the grain size increases with sintering temperature. Among the prepared ferrites, Ni 0.3 Cu 0.2 Zn 0.5 Sc 0.05 Fe 1.95 O 4 has the maximum density (5.05 × 10 3  kg/m 3 ) at sintering temperature 1150 °C, which gives the highest value of initial permeability. It is observed that initial permeability varies with sintering temperature, and it gives the maximum value at optimum sintering temperature. It is noted that Curie temperature decreases with 5% Sc 3+ ions doping, whereas it slightly increases with increasing sintering temperature for both compositions. Ni 0.3 Cu 0.2 Zn 0.5 Fe 2 O 4 compound shows the highest Curie temperature 418 °C. Dielectric constant, dielectric loss factor and AC electrical conductivity decrease with 5% Sc 3+ ions doping in Ni–Cu–Zn ferrite. The initial permeability decreases sharply at Curie temperature, which indicates a high degree of compositional homogeneity. The ‘Hopkinson’ peak is observed just below the Curie temperature in the real part of initial permeability versus temperature graphs. The mechanism of dielectric polarization and electrical conductivity has been explained based on the electron hopping between Fe 3+ and Fe 2+ ions. The variation trend of complex impedance and AC electrical conductivity reveals the semiconducting behavior of the ferrite samples. Formation of partial semicircles in the Z / -axis indicates that relaxation process is non-Debye type. The investigated ferrites show relatively high initial permeability, low magnetic loss, and low electrical conductivity in a wide frequency range, which make them potential candidate for various practical applications such as small and compact power suppliers for computers, microprocessors, microwave electronic devices, etc.
doi_str_mv 10.1007/s10854-020-05018-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491437484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491437484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a815aea3ca937d2fec200d16fbc3be76ed740ccc48cbd17c015f5a530fdb8c9a3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEuXnAqwssSUwju06WaKKP6mCBSAhNpbrjNtUbRJsZ8GOO8AJOQkuQYIVm7E9eu_zzCPkiMEpA1BngUEhRQY5ZCCBFZnaIiMmFc9EkT9tkxGUUmVC5vku2QthCQBjwYsR-bhwDm2kraOhbiL6upnTiOsOvYm9R9o2NC6Qhuh7mxpmdULXre8W7aqd13bzxFUC-OFumoquzbzBWFva-TZhYo1hg7-tP9_eJ30qz8237m8jlXtLHXpfRwwHZMeZVcDDn3OfPF5ePEyus-nd1c3kfJpZzsqYmYJJg4ZbU3JV5WmPHKBiYzezfIZqjJUSYK0VhZ1VTFlg0kkjObhqVtjS8H1yPHDTpC89hqiXbe-b9KXORckEV6IQSZUPKuvbEDw63fl6bfyrZqA36eshfZ3S19_pa5VMfDCFbhMp-l_0P64vSCeQAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491437484</pqid></control><display><type>article</type><title>Effect of sintering temperature on the structural, morphological, electrical, and magnetic properties of Ni–Cu–Zn and Ni–Cu–Zn–Sc ferrites</title><source>SpringerLink Journals - AutoHoldings</source><creator>Harun-Or-Rashid, Md ; Islam, M. Nazrul ; Arifuzzaman, M. ; Hossain, A. K. M. Akther</creator><creatorcontrib>Harun-Or-Rashid, Md ; Islam, M. Nazrul ; Arifuzzaman, M. ; Hossain, A. K. M. Akther</creatorcontrib><description>Polycrystalline Ni 0.3 Cu 0.2 Zn 0.5 Fe 2 O 4 and Ni 0.3 Cu 0.2 Zn 0.5 Sc 0.05 Fe 1.95 O 4 compounds have been prepared by standard solid-state reaction technique and sintered at 1000, 1100, 1150, 1200, and 1250 °C for 5 h in air. The effect of sintering temperature on the structural, morphological, magnetic, dielectric, and electrical properties of these spinel ferrites has been studied thoroughly and comparatively. Formation of the single-phase cubic spinel structure of these compositions is confirmed by X-ray diffraction analysis. The lattice constant increases with sintering temperature as well as with 5% scandium (Sc 3+ ) doping in Ni–Cu–Zn ferrite. Surface morphology reveals that the grain size increases with sintering temperature. Among the prepared ferrites, Ni 0.3 Cu 0.2 Zn 0.5 Sc 0.05 Fe 1.95 O 4 has the maximum density (5.05 × 10 3  kg/m 3 ) at sintering temperature 1150 °C, which gives the highest value of initial permeability. It is observed that initial permeability varies with sintering temperature, and it gives the maximum value at optimum sintering temperature. It is noted that Curie temperature decreases with 5% Sc 3+ ions doping, whereas it slightly increases with increasing sintering temperature for both compositions. Ni 0.3 Cu 0.2 Zn 0.5 Fe 2 O 4 compound shows the highest Curie temperature 418 °C. Dielectric constant, dielectric loss factor and AC electrical conductivity decrease with 5% Sc 3+ ions doping in Ni–Cu–Zn ferrite. The initial permeability decreases sharply at Curie temperature, which indicates a high degree of compositional homogeneity. The ‘Hopkinson’ peak is observed just below the Curie temperature in the real part of initial permeability versus temperature graphs. The mechanism of dielectric polarization and electrical conductivity has been explained based on the electron hopping between Fe 3+ and Fe 2+ ions. The variation trend of complex impedance and AC electrical conductivity reveals the semiconducting behavior of the ferrite samples. Formation of partial semicircles in the Z / -axis indicates that relaxation process is non-Debye type. The investigated ferrites show relatively high initial permeability, low magnetic loss, and low electrical conductivity in a wide frequency range, which make them potential candidate for various practical applications such as small and compact power suppliers for computers, microprocessors, microwave electronic devices, etc.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-05018-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composition ; Copper ; Curie temperature ; Dielectric loss ; Dielectric polarization ; Doping ; Electrical properties ; Electrical resistivity ; Electronic devices ; Frequency ranges ; Grain size ; Homogeneity ; Lattice parameters ; Magnetic permeability ; Magnetic properties ; Materials Science ; Microprocessors ; Morphology ; Nickel ; Optical and Electronic Materials ; Permeability ; Permittivity ; Scandium ; Sintering ; Spinel ; Temperature ; Zinc ferrites</subject><ispartof>Journal of materials science. Materials in electronics, 2021, Vol.32 (2), p.2505-2523</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a815aea3ca937d2fec200d16fbc3be76ed740ccc48cbd17c015f5a530fdb8c9a3</citedby><cites>FETCH-LOGICAL-c319t-a815aea3ca937d2fec200d16fbc3be76ed740ccc48cbd17c015f5a530fdb8c9a3</cites><orcidid>0000-0003-3452-9351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-05018-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-05018-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Harun-Or-Rashid, Md</creatorcontrib><creatorcontrib>Islam, M. Nazrul</creatorcontrib><creatorcontrib>Arifuzzaman, M.</creatorcontrib><creatorcontrib>Hossain, A. K. M. Akther</creatorcontrib><title>Effect of sintering temperature on the structural, morphological, electrical, and magnetic properties of Ni–Cu–Zn and Ni–Cu–Zn–Sc ferrites</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Polycrystalline Ni 0.3 Cu 0.2 Zn 0.5 Fe 2 O 4 and Ni 0.3 Cu 0.2 Zn 0.5 Sc 0.05 Fe 1.95 O 4 compounds have been prepared by standard solid-state reaction technique and sintered at 1000, 1100, 1150, 1200, and 1250 °C for 5 h in air. The effect of sintering temperature on the structural, morphological, magnetic, dielectric, and electrical properties of these spinel ferrites has been studied thoroughly and comparatively. Formation of the single-phase cubic spinel structure of these compositions is confirmed by X-ray diffraction analysis. The lattice constant increases with sintering temperature as well as with 5% scandium (Sc 3+ ) doping in Ni–Cu–Zn ferrite. Surface morphology reveals that the grain size increases with sintering temperature. Among the prepared ferrites, Ni 0.3 Cu 0.2 Zn 0.5 Sc 0.05 Fe 1.95 O 4 has the maximum density (5.05 × 10 3  kg/m 3 ) at sintering temperature 1150 °C, which gives the highest value of initial permeability. It is observed that initial permeability varies with sintering temperature, and it gives the maximum value at optimum sintering temperature. It is noted that Curie temperature decreases with 5% Sc 3+ ions doping, whereas it slightly increases with increasing sintering temperature for both compositions. Ni 0.3 Cu 0.2 Zn 0.5 Fe 2 O 4 compound shows the highest Curie temperature 418 °C. Dielectric constant, dielectric loss factor and AC electrical conductivity decrease with 5% Sc 3+ ions doping in Ni–Cu–Zn ferrite. The initial permeability decreases sharply at Curie temperature, which indicates a high degree of compositional homogeneity. The ‘Hopkinson’ peak is observed just below the Curie temperature in the real part of initial permeability versus temperature graphs. The mechanism of dielectric polarization and electrical conductivity has been explained based on the electron hopping between Fe 3+ and Fe 2+ ions. The variation trend of complex impedance and AC electrical conductivity reveals the semiconducting behavior of the ferrite samples. Formation of partial semicircles in the Z / -axis indicates that relaxation process is non-Debye type. The investigated ferrites show relatively high initial permeability, low magnetic loss, and low electrical conductivity in a wide frequency range, which make them potential candidate for various practical applications such as small and compact power suppliers for computers, microprocessors, microwave electronic devices, etc.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composition</subject><subject>Copper</subject><subject>Curie temperature</subject><subject>Dielectric loss</subject><subject>Dielectric polarization</subject><subject>Doping</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Electronic devices</subject><subject>Frequency ranges</subject><subject>Grain size</subject><subject>Homogeneity</subject><subject>Lattice parameters</subject><subject>Magnetic permeability</subject><subject>Magnetic properties</subject><subject>Materials Science</subject><subject>Microprocessors</subject><subject>Morphology</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Permeability</subject><subject>Permittivity</subject><subject>Scandium</subject><subject>Sintering</subject><subject>Spinel</subject><subject>Temperature</subject><subject>Zinc ferrites</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1OwzAQhS0EEuXnAqwssSUwju06WaKKP6mCBSAhNpbrjNtUbRJsZ8GOO8AJOQkuQYIVm7E9eu_zzCPkiMEpA1BngUEhRQY5ZCCBFZnaIiMmFc9EkT9tkxGUUmVC5vku2QthCQBjwYsR-bhwDm2kraOhbiL6upnTiOsOvYm9R9o2NC6Qhuh7mxpmdULXre8W7aqd13bzxFUC-OFumoquzbzBWFva-TZhYo1hg7-tP9_eJ30qz8237m8jlXtLHXpfRwwHZMeZVcDDn3OfPF5ePEyus-nd1c3kfJpZzsqYmYJJg4ZbU3JV5WmPHKBiYzezfIZqjJUSYK0VhZ1VTFlg0kkjObhqVtjS8H1yPHDTpC89hqiXbe-b9KXORckEV6IQSZUPKuvbEDw63fl6bfyrZqA36eshfZ3S19_pa5VMfDCFbhMp-l_0P64vSCeQAw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Harun-Or-Rashid, Md</creator><creator>Islam, M. Nazrul</creator><creator>Arifuzzaman, M.</creator><creator>Hossain, A. K. M. Akther</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-3452-9351</orcidid></search><sort><creationdate>2021</creationdate><title>Effect of sintering temperature on the structural, morphological, electrical, and magnetic properties of Ni–Cu–Zn and Ni–Cu–Zn–Sc ferrites</title><author>Harun-Or-Rashid, Md ; Islam, M. Nazrul ; Arifuzzaman, M. ; Hossain, A. K. M. Akther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a815aea3ca937d2fec200d16fbc3be76ed740ccc48cbd17c015f5a530fdb8c9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composition</topic><topic>Copper</topic><topic>Curie temperature</topic><topic>Dielectric loss</topic><topic>Dielectric polarization</topic><topic>Doping</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Electronic devices</topic><topic>Frequency ranges</topic><topic>Grain size</topic><topic>Homogeneity</topic><topic>Lattice parameters</topic><topic>Magnetic permeability</topic><topic>Magnetic properties</topic><topic>Materials Science</topic><topic>Microprocessors</topic><topic>Morphology</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Permeability</topic><topic>Permittivity</topic><topic>Scandium</topic><topic>Sintering</topic><topic>Spinel</topic><topic>Temperature</topic><topic>Zinc ferrites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harun-Or-Rashid, Md</creatorcontrib><creatorcontrib>Islam, M. Nazrul</creatorcontrib><creatorcontrib>Arifuzzaman, M.</creatorcontrib><creatorcontrib>Hossain, A. K. M. Akther</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harun-Or-Rashid, Md</au><au>Islam, M. Nazrul</au><au>Arifuzzaman, M.</au><au>Hossain, A. K. M. Akther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of sintering temperature on the structural, morphological, electrical, and magnetic properties of Ni–Cu–Zn and Ni–Cu–Zn–Sc ferrites</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021</date><risdate>2021</risdate><volume>32</volume><issue>2</issue><spage>2505</spage><epage>2523</epage><pages>2505-2523</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Polycrystalline Ni 0.3 Cu 0.2 Zn 0.5 Fe 2 O 4 and Ni 0.3 Cu 0.2 Zn 0.5 Sc 0.05 Fe 1.95 O 4 compounds have been prepared by standard solid-state reaction technique and sintered at 1000, 1100, 1150, 1200, and 1250 °C for 5 h in air. The effect of sintering temperature on the structural, morphological, magnetic, dielectric, and electrical properties of these spinel ferrites has been studied thoroughly and comparatively. Formation of the single-phase cubic spinel structure of these compositions is confirmed by X-ray diffraction analysis. The lattice constant increases with sintering temperature as well as with 5% scandium (Sc 3+ ) doping in Ni–Cu–Zn ferrite. Surface morphology reveals that the grain size increases with sintering temperature. Among the prepared ferrites, Ni 0.3 Cu 0.2 Zn 0.5 Sc 0.05 Fe 1.95 O 4 has the maximum density (5.05 × 10 3  kg/m 3 ) at sintering temperature 1150 °C, which gives the highest value of initial permeability. It is observed that initial permeability varies with sintering temperature, and it gives the maximum value at optimum sintering temperature. It is noted that Curie temperature decreases with 5% Sc 3+ ions doping, whereas it slightly increases with increasing sintering temperature for both compositions. Ni 0.3 Cu 0.2 Zn 0.5 Fe 2 O 4 compound shows the highest Curie temperature 418 °C. Dielectric constant, dielectric loss factor and AC electrical conductivity decrease with 5% Sc 3+ ions doping in Ni–Cu–Zn ferrite. The initial permeability decreases sharply at Curie temperature, which indicates a high degree of compositional homogeneity. The ‘Hopkinson’ peak is observed just below the Curie temperature in the real part of initial permeability versus temperature graphs. The mechanism of dielectric polarization and electrical conductivity has been explained based on the electron hopping between Fe 3+ and Fe 2+ ions. The variation trend of complex impedance and AC electrical conductivity reveals the semiconducting behavior of the ferrite samples. Formation of partial semicircles in the Z / -axis indicates that relaxation process is non-Debye type. The investigated ferrites show relatively high initial permeability, low magnetic loss, and low electrical conductivity in a wide frequency range, which make them potential candidate for various practical applications such as small and compact power suppliers for computers, microprocessors, microwave electronic devices, etc.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-05018-7</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3452-9351</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2021, Vol.32 (2), p.2505-2523
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2491437484
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Composition
Copper
Curie temperature
Dielectric loss
Dielectric polarization
Doping
Electrical properties
Electrical resistivity
Electronic devices
Frequency ranges
Grain size
Homogeneity
Lattice parameters
Magnetic permeability
Magnetic properties
Materials Science
Microprocessors
Morphology
Nickel
Optical and Electronic Materials
Permeability
Permittivity
Scandium
Sintering
Spinel
Temperature
Zinc ferrites
title Effect of sintering temperature on the structural, morphological, electrical, and magnetic properties of Ni–Cu–Zn and Ni–Cu–Zn–Sc ferrites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A53%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20sintering%20temperature%20on%20the%20structural,%20morphological,%20electrical,%20and%20magnetic%20properties%20of%20Ni%E2%80%93Cu%E2%80%93Zn%20and%20Ni%E2%80%93Cu%E2%80%93Zn%E2%80%93Sc%20ferrites&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Harun-Or-Rashid,%20Md&rft.date=2021&rft.volume=32&rft.issue=2&rft.spage=2505&rft.epage=2523&rft.pages=2505-2523&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-05018-7&rft_dat=%3Cproquest_cross%3E2491437484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491437484&rft_id=info:pmid/&rfr_iscdi=true