Identifying Efficient Transport Pathways in Early-Wood Timber: Insights from 3D X-ray CT Imaging of Softwood in the Presence of Flow

Wider use of timber has the potential to greatly reduce the embodied carbon of construction. Improved chemical treatment could help overcome some of the barriers to wider application of timber, by furthering the durability and/or mechanical properties of this natural material. Improving timber treat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport in porous media 2021-02, Vol.136 (3), p.813-830
Hauptverfasser: Burridge, H. C., Pini, R., Shah, S. M. K., Reynolds, T. P. S., Wu, G., Shah, D. U., Scherman, O. A., Ramage, M. H., Linden, P. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 830
container_issue 3
container_start_page 813
container_title Transport in porous media
container_volume 136
creator Burridge, H. C.
Pini, R.
Shah, S. M. K.
Reynolds, T. P. S.
Wu, G.
Shah, D. U.
Scherman, O. A.
Ramage, M. H.
Linden, P. F.
description Wider use of timber has the potential to greatly reduce the embodied carbon of construction. Improved chemical treatment could help overcome some of the barriers to wider application of timber, by furthering the durability and/or mechanical properties of this natural material. Improving timber treatment by treating the whole volume of a piece of timber, or tailored sections thereof, requires sound understanding and validated modelling of the natural paths for fluid flow through wood. In this study we carry out a robust analysis of three-dimensional X-ray CT measurements on kiln-dried softwood in the presence of flow and identify small portions of early-wood which are uniquely capable of transporting fluids—herein ‘efficient transport pathways’. We successfully model the effects of these pathways on the liquid uptake by timber by introducing a spatial variability in the amount of aspiration of the bordered pits following kiln drying. The model demonstrates that fluid advances along these efficient transport paths between 10 and 30 times faster than in the remainder of the timber. Identifying these efficient transport pathways offers scope to improve and extend the degree to which timber properties are enhanced at an industrial scale through processes to impregnate timber.
doi_str_mv 10.1007/s11242-020-01540-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491437473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491437473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-c7842a8ae061dfc940c1afdcb306bfc596a1d4d2a46c5f3dc50ce947d89f2cfe3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuA19F89cs7mZsWBg6s6F3I0qTrWJuZZIze-8NtreCdV4fDeZ_3wAPANcG3BOPkzhNCOUWYYoRJxDFKT8CERAlDJGb8FEwwiTPEMsLOwYX3W4x7LOUT8JWXug216eq2gnNjalX3OyycbP3eugBXMmyOsvOwbuFcul2H3q0tYVE3a-3uYd76utoED42zDWSP8AM52cFZAfNGVkOpNfDVmnAcqL4jbDRcOe11q_RwW-zs8RKcGbnz-up3TsHbYl7MntHy5SmfPSyRYgkNSCUppzKVGsekNCrjWBFpSrVmOF4bFWWxJCUvqeSxigwrVYSVznhSppmhymg2BTdj797Zz4P2QWztwbX9S0F5RjhLeML6FB1TylnvnTZi7-pGuk4QLAbbYrQtetvix7ZIe4iNkO_DbaXdX_U_1DcWqIN2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491437473</pqid></control><display><type>article</type><title>Identifying Efficient Transport Pathways in Early-Wood Timber: Insights from 3D X-ray CT Imaging of Softwood in the Presence of Flow</title><source>SpringerNature Journals</source><creator>Burridge, H. C. ; Pini, R. ; Shah, S. M. K. ; Reynolds, T. P. S. ; Wu, G. ; Shah, D. U. ; Scherman, O. A. ; Ramage, M. H. ; Linden, P. F.</creator><creatorcontrib>Burridge, H. C. ; Pini, R. ; Shah, S. M. K. ; Reynolds, T. P. S. ; Wu, G. ; Shah, D. U. ; Scherman, O. A. ; Ramage, M. H. ; Linden, P. F.</creatorcontrib><description>Wider use of timber has the potential to greatly reduce the embodied carbon of construction. Improved chemical treatment could help overcome some of the barriers to wider application of timber, by furthering the durability and/or mechanical properties of this natural material. Improving timber treatment by treating the whole volume of a piece of timber, or tailored sections thereof, requires sound understanding and validated modelling of the natural paths for fluid flow through wood. In this study we carry out a robust analysis of three-dimensional X-ray CT measurements on kiln-dried softwood in the presence of flow and identify small portions of early-wood which are uniquely capable of transporting fluids—herein ‘efficient transport pathways’. We successfully model the effects of these pathways on the liquid uptake by timber by introducing a spatial variability in the amount of aspiration of the bordered pits following kiln drying. The model demonstrates that fluid advances along these efficient transport paths between 10 and 30 times faster than in the remainder of the timber. Identifying these efficient transport pathways offers scope to improve and extend the degree to which timber properties are enhanced at an industrial scale through processes to impregnate timber.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-020-01540-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Chemical treatment ; Civil Engineering ; Classical and Continuum Physics ; Computational fluid dynamics ; Computed tomography ; Earth and Environmental Science ; Earth Sciences ; Fluid flow ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Kilns ; Mechanical properties ; Three dimensional analysis ; X ray imagery</subject><ispartof>Transport in porous media, 2021-02, Vol.136 (3), p.813-830</ispartof><rights>The Author(s) 2021. corrected publication 2021</rights><rights>The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c372t-c7842a8ae061dfc940c1afdcb306bfc596a1d4d2a46c5f3dc50ce947d89f2cfe3</cites><orcidid>0000-0002-9443-3573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-020-01540-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-020-01540-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Burridge, H. C.</creatorcontrib><creatorcontrib>Pini, R.</creatorcontrib><creatorcontrib>Shah, S. M. K.</creatorcontrib><creatorcontrib>Reynolds, T. P. S.</creatorcontrib><creatorcontrib>Wu, G.</creatorcontrib><creatorcontrib>Shah, D. U.</creatorcontrib><creatorcontrib>Scherman, O. A.</creatorcontrib><creatorcontrib>Ramage, M. H.</creatorcontrib><creatorcontrib>Linden, P. F.</creatorcontrib><title>Identifying Efficient Transport Pathways in Early-Wood Timber: Insights from 3D X-ray CT Imaging of Softwood in the Presence of Flow</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>Wider use of timber has the potential to greatly reduce the embodied carbon of construction. Improved chemical treatment could help overcome some of the barriers to wider application of timber, by furthering the durability and/or mechanical properties of this natural material. Improving timber treatment by treating the whole volume of a piece of timber, or tailored sections thereof, requires sound understanding and validated modelling of the natural paths for fluid flow through wood. In this study we carry out a robust analysis of three-dimensional X-ray CT measurements on kiln-dried softwood in the presence of flow and identify small portions of early-wood which are uniquely capable of transporting fluids—herein ‘efficient transport pathways’. We successfully model the effects of these pathways on the liquid uptake by timber by introducing a spatial variability in the amount of aspiration of the bordered pits following kiln drying. The model demonstrates that fluid advances along these efficient transport paths between 10 and 30 times faster than in the remainder of the timber. Identifying these efficient transport pathways offers scope to improve and extend the degree to which timber properties are enhanced at an industrial scale through processes to impregnate timber.</description><subject>Chemical treatment</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Computed tomography</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluid flow</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Kilns</subject><subject>Mechanical properties</subject><subject>Three dimensional analysis</subject><subject>X ray imagery</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kF1LwzAUhoMoOKd_wKuA19F89cs7mZsWBg6s6F3I0qTrWJuZZIze-8NtreCdV4fDeZ_3wAPANcG3BOPkzhNCOUWYYoRJxDFKT8CERAlDJGb8FEwwiTPEMsLOwYX3W4x7LOUT8JWXug216eq2gnNjalX3OyycbP3eugBXMmyOsvOwbuFcul2H3q0tYVE3a-3uYd76utoED42zDWSP8AM52cFZAfNGVkOpNfDVmnAcqL4jbDRcOe11q_RwW-zs8RKcGbnz-up3TsHbYl7MntHy5SmfPSyRYgkNSCUppzKVGsekNCrjWBFpSrVmOF4bFWWxJCUvqeSxigwrVYSVznhSppmhymg2BTdj797Zz4P2QWztwbX9S0F5RjhLeML6FB1TylnvnTZi7-pGuk4QLAbbYrQtetvix7ZIe4iNkO_DbaXdX_U_1DcWqIN2</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Burridge, H. C.</creator><creator>Pini, R.</creator><creator>Shah, S. M. K.</creator><creator>Reynolds, T. P. S.</creator><creator>Wu, G.</creator><creator>Shah, D. U.</creator><creator>Scherman, O. A.</creator><creator>Ramage, M. H.</creator><creator>Linden, P. F.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9443-3573</orcidid></search><sort><creationdate>20210201</creationdate><title>Identifying Efficient Transport Pathways in Early-Wood Timber: Insights from 3D X-ray CT Imaging of Softwood in the Presence of Flow</title><author>Burridge, H. C. ; Pini, R. ; Shah, S. M. K. ; Reynolds, T. P. S. ; Wu, G. ; Shah, D. U. ; Scherman, O. A. ; Ramage, M. H. ; Linden, P. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-c7842a8ae061dfc940c1afdcb306bfc596a1d4d2a46c5f3dc50ce947d89f2cfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical treatment</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Computed tomography</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluid flow</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Kilns</topic><topic>Mechanical properties</topic><topic>Three dimensional analysis</topic><topic>X ray imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burridge, H. C.</creatorcontrib><creatorcontrib>Pini, R.</creatorcontrib><creatorcontrib>Shah, S. M. K.</creatorcontrib><creatorcontrib>Reynolds, T. P. S.</creatorcontrib><creatorcontrib>Wu, G.</creatorcontrib><creatorcontrib>Shah, D. U.</creatorcontrib><creatorcontrib>Scherman, O. A.</creatorcontrib><creatorcontrib>Ramage, M. H.</creatorcontrib><creatorcontrib>Linden, P. F.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burridge, H. C.</au><au>Pini, R.</au><au>Shah, S. M. K.</au><au>Reynolds, T. P. S.</au><au>Wu, G.</au><au>Shah, D. U.</au><au>Scherman, O. A.</au><au>Ramage, M. H.</au><au>Linden, P. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Efficient Transport Pathways in Early-Wood Timber: Insights from 3D X-ray CT Imaging of Softwood in the Presence of Flow</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>136</volume><issue>3</issue><spage>813</spage><epage>830</epage><pages>813-830</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>Wider use of timber has the potential to greatly reduce the embodied carbon of construction. Improved chemical treatment could help overcome some of the barriers to wider application of timber, by furthering the durability and/or mechanical properties of this natural material. Improving timber treatment by treating the whole volume of a piece of timber, or tailored sections thereof, requires sound understanding and validated modelling of the natural paths for fluid flow through wood. In this study we carry out a robust analysis of three-dimensional X-ray CT measurements on kiln-dried softwood in the presence of flow and identify small portions of early-wood which are uniquely capable of transporting fluids—herein ‘efficient transport pathways’. We successfully model the effects of these pathways on the liquid uptake by timber by introducing a spatial variability in the amount of aspiration of the bordered pits following kiln drying. The model demonstrates that fluid advances along these efficient transport paths between 10 and 30 times faster than in the remainder of the timber. Identifying these efficient transport pathways offers scope to improve and extend the degree to which timber properties are enhanced at an industrial scale through processes to impregnate timber.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-020-01540-8</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9443-3573</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2021-02, Vol.136 (3), p.813-830
issn 0169-3913
1573-1634
language eng
recordid cdi_proquest_journals_2491437473
source SpringerNature Journals
subjects Chemical treatment
Civil Engineering
Classical and Continuum Physics
Computational fluid dynamics
Computed tomography
Earth and Environmental Science
Earth Sciences
Fluid flow
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology/Water Resources
Industrial Chemistry/Chemical Engineering
Kilns
Mechanical properties
Three dimensional analysis
X ray imagery
title Identifying Efficient Transport Pathways in Early-Wood Timber: Insights from 3D X-ray CT Imaging of Softwood in the Presence of Flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Efficient%20Transport%20Pathways%20in%20Early-Wood%20Timber:%20Insights%20from%203D%20X-ray%20CT%20Imaging%20of%20Softwood%20in%20the%20Presence%20of%20Flow&rft.jtitle=Transport%20in%20porous%20media&rft.au=Burridge,%20H.%20C.&rft.date=2021-02-01&rft.volume=136&rft.issue=3&rft.spage=813&rft.epage=830&rft.pages=813-830&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-020-01540-8&rft_dat=%3Cproquest_cross%3E2491437473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491437473&rft_id=info:pmid/&rfr_iscdi=true