Identifying Efficient Transport Pathways in Early-Wood Timber: Insights from 3D X-ray CT Imaging of Softwood in the Presence of Flow
Wider use of timber has the potential to greatly reduce the embodied carbon of construction. Improved chemical treatment could help overcome some of the barriers to wider application of timber, by furthering the durability and/or mechanical properties of this natural material. Improving timber treat...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2021-02, Vol.136 (3), p.813-830 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 830 |
---|---|
container_issue | 3 |
container_start_page | 813 |
container_title | Transport in porous media |
container_volume | 136 |
creator | Burridge, H. C. Pini, R. Shah, S. M. K. Reynolds, T. P. S. Wu, G. Shah, D. U. Scherman, O. A. Ramage, M. H. Linden, P. F. |
description | Wider use of timber has the potential to greatly reduce the embodied carbon of construction. Improved chemical treatment could help overcome some of the barriers to wider application of timber, by furthering the durability and/or mechanical properties of this natural material. Improving timber treatment by treating the whole volume of a piece of timber, or tailored sections thereof, requires sound understanding and validated modelling of the natural paths for fluid flow through wood. In this study we carry out a robust analysis of three-dimensional X-ray CT measurements on kiln-dried softwood in the presence of flow and identify small portions of early-wood which are uniquely capable of transporting fluids—herein ‘efficient transport pathways’. We successfully model the effects of these pathways on the liquid uptake by timber by introducing a spatial variability in the amount of aspiration of the bordered pits following kiln drying. The model demonstrates that fluid advances along these efficient transport paths between 10 and 30 times faster than in the remainder of the timber. Identifying these efficient transport pathways offers scope to improve and extend the degree to which timber properties are enhanced at an industrial scale through processes to impregnate timber. |
doi_str_mv | 10.1007/s11242-020-01540-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491437473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491437473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-c7842a8ae061dfc940c1afdcb306bfc596a1d4d2a46c5f3dc50ce947d89f2cfe3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuA19F89cs7mZsWBg6s6F3I0qTrWJuZZIze-8NtreCdV4fDeZ_3wAPANcG3BOPkzhNCOUWYYoRJxDFKT8CERAlDJGb8FEwwiTPEMsLOwYX3W4x7LOUT8JWXug216eq2gnNjalX3OyycbP3eugBXMmyOsvOwbuFcul2H3q0tYVE3a-3uYd76utoED42zDWSP8AM52cFZAfNGVkOpNfDVmnAcqL4jbDRcOe11q_RwW-zs8RKcGbnz-up3TsHbYl7MntHy5SmfPSyRYgkNSCUppzKVGsekNCrjWBFpSrVmOF4bFWWxJCUvqeSxigwrVYSVznhSppmhymg2BTdj797Zz4P2QWztwbX9S0F5RjhLeML6FB1TylnvnTZi7-pGuk4QLAbbYrQtetvix7ZIe4iNkO_DbaXdX_U_1DcWqIN2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491437473</pqid></control><display><type>article</type><title>Identifying Efficient Transport Pathways in Early-Wood Timber: Insights from 3D X-ray CT Imaging of Softwood in the Presence of Flow</title><source>SpringerNature Journals</source><creator>Burridge, H. C. ; Pini, R. ; Shah, S. M. K. ; Reynolds, T. P. S. ; Wu, G. ; Shah, D. U. ; Scherman, O. A. ; Ramage, M. H. ; Linden, P. F.</creator><creatorcontrib>Burridge, H. C. ; Pini, R. ; Shah, S. M. K. ; Reynolds, T. P. S. ; Wu, G. ; Shah, D. U. ; Scherman, O. A. ; Ramage, M. H. ; Linden, P. F.</creatorcontrib><description>Wider use of timber has the potential to greatly reduce the embodied carbon of construction. Improved chemical treatment could help overcome some of the barriers to wider application of timber, by furthering the durability and/or mechanical properties of this natural material. Improving timber treatment by treating the whole volume of a piece of timber, or tailored sections thereof, requires sound understanding and validated modelling of the natural paths for fluid flow through wood. In this study we carry out a robust analysis of three-dimensional X-ray CT measurements on kiln-dried softwood in the presence of flow and identify small portions of early-wood which are uniquely capable of transporting fluids—herein ‘efficient transport pathways’. We successfully model the effects of these pathways on the liquid uptake by timber by introducing a spatial variability in the amount of aspiration of the bordered pits following kiln drying. The model demonstrates that fluid advances along these efficient transport paths between 10 and 30 times faster than in the remainder of the timber. Identifying these efficient transport pathways offers scope to improve and extend the degree to which timber properties are enhanced at an industrial scale through processes to impregnate timber.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-020-01540-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Chemical treatment ; Civil Engineering ; Classical and Continuum Physics ; Computational fluid dynamics ; Computed tomography ; Earth and Environmental Science ; Earth Sciences ; Fluid flow ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Kilns ; Mechanical properties ; Three dimensional analysis ; X ray imagery</subject><ispartof>Transport in porous media, 2021-02, Vol.136 (3), p.813-830</ispartof><rights>The Author(s) 2021. corrected publication 2021</rights><rights>The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c372t-c7842a8ae061dfc940c1afdcb306bfc596a1d4d2a46c5f3dc50ce947d89f2cfe3</cites><orcidid>0000-0002-9443-3573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-020-01540-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-020-01540-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Burridge, H. C.</creatorcontrib><creatorcontrib>Pini, R.</creatorcontrib><creatorcontrib>Shah, S. M. K.</creatorcontrib><creatorcontrib>Reynolds, T. P. S.</creatorcontrib><creatorcontrib>Wu, G.</creatorcontrib><creatorcontrib>Shah, D. U.</creatorcontrib><creatorcontrib>Scherman, O. A.</creatorcontrib><creatorcontrib>Ramage, M. H.</creatorcontrib><creatorcontrib>Linden, P. F.</creatorcontrib><title>Identifying Efficient Transport Pathways in Early-Wood Timber: Insights from 3D X-ray CT Imaging of Softwood in the Presence of Flow</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>Wider use of timber has the potential to greatly reduce the embodied carbon of construction. Improved chemical treatment could help overcome some of the barriers to wider application of timber, by furthering the durability and/or mechanical properties of this natural material. Improving timber treatment by treating the whole volume of a piece of timber, or tailored sections thereof, requires sound understanding and validated modelling of the natural paths for fluid flow through wood. In this study we carry out a robust analysis of three-dimensional X-ray CT measurements on kiln-dried softwood in the presence of flow and identify small portions of early-wood which are uniquely capable of transporting fluids—herein ‘efficient transport pathways’. We successfully model the effects of these pathways on the liquid uptake by timber by introducing a spatial variability in the amount of aspiration of the bordered pits following kiln drying. The model demonstrates that fluid advances along these efficient transport paths between 10 and 30 times faster than in the remainder of the timber. Identifying these efficient transport pathways offers scope to improve and extend the degree to which timber properties are enhanced at an industrial scale through processes to impregnate timber.</description><subject>Chemical treatment</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Computed tomography</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluid flow</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Kilns</subject><subject>Mechanical properties</subject><subject>Three dimensional analysis</subject><subject>X ray imagery</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kF1LwzAUhoMoOKd_wKuA19F89cs7mZsWBg6s6F3I0qTrWJuZZIze-8NtreCdV4fDeZ_3wAPANcG3BOPkzhNCOUWYYoRJxDFKT8CERAlDJGb8FEwwiTPEMsLOwYX3W4x7LOUT8JWXug216eq2gnNjalX3OyycbP3eugBXMmyOsvOwbuFcul2H3q0tYVE3a-3uYd76utoED42zDWSP8AM52cFZAfNGVkOpNfDVmnAcqL4jbDRcOe11q_RwW-zs8RKcGbnz-up3TsHbYl7MntHy5SmfPSyRYgkNSCUppzKVGsekNCrjWBFpSrVmOF4bFWWxJCUvqeSxigwrVYSVznhSppmhymg2BTdj797Zz4P2QWztwbX9S0F5RjhLeML6FB1TylnvnTZi7-pGuk4QLAbbYrQtetvix7ZIe4iNkO_DbaXdX_U_1DcWqIN2</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Burridge, H. C.</creator><creator>Pini, R.</creator><creator>Shah, S. M. K.</creator><creator>Reynolds, T. P. S.</creator><creator>Wu, G.</creator><creator>Shah, D. U.</creator><creator>Scherman, O. A.</creator><creator>Ramage, M. H.</creator><creator>Linden, P. F.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9443-3573</orcidid></search><sort><creationdate>20210201</creationdate><title>Identifying Efficient Transport Pathways in Early-Wood Timber: Insights from 3D X-ray CT Imaging of Softwood in the Presence of Flow</title><author>Burridge, H. C. ; Pini, R. ; Shah, S. M. K. ; Reynolds, T. P. S. ; Wu, G. ; Shah, D. U. ; Scherman, O. A. ; Ramage, M. H. ; Linden, P. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-c7842a8ae061dfc940c1afdcb306bfc596a1d4d2a46c5f3dc50ce947d89f2cfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical treatment</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Computed tomography</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluid flow</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Kilns</topic><topic>Mechanical properties</topic><topic>Three dimensional analysis</topic><topic>X ray imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burridge, H. C.</creatorcontrib><creatorcontrib>Pini, R.</creatorcontrib><creatorcontrib>Shah, S. M. K.</creatorcontrib><creatorcontrib>Reynolds, T. P. S.</creatorcontrib><creatorcontrib>Wu, G.</creatorcontrib><creatorcontrib>Shah, D. U.</creatorcontrib><creatorcontrib>Scherman, O. A.</creatorcontrib><creatorcontrib>Ramage, M. H.</creatorcontrib><creatorcontrib>Linden, P. F.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burridge, H. C.</au><au>Pini, R.</au><au>Shah, S. M. K.</au><au>Reynolds, T. P. S.</au><au>Wu, G.</au><au>Shah, D. U.</au><au>Scherman, O. A.</au><au>Ramage, M. H.</au><au>Linden, P. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Efficient Transport Pathways in Early-Wood Timber: Insights from 3D X-ray CT Imaging of Softwood in the Presence of Flow</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>136</volume><issue>3</issue><spage>813</spage><epage>830</epage><pages>813-830</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>Wider use of timber has the potential to greatly reduce the embodied carbon of construction. Improved chemical treatment could help overcome some of the barriers to wider application of timber, by furthering the durability and/or mechanical properties of this natural material. Improving timber treatment by treating the whole volume of a piece of timber, or tailored sections thereof, requires sound understanding and validated modelling of the natural paths for fluid flow through wood. In this study we carry out a robust analysis of three-dimensional X-ray CT measurements on kiln-dried softwood in the presence of flow and identify small portions of early-wood which are uniquely capable of transporting fluids—herein ‘efficient transport pathways’. We successfully model the effects of these pathways on the liquid uptake by timber by introducing a spatial variability in the amount of aspiration of the bordered pits following kiln drying. The model demonstrates that fluid advances along these efficient transport paths between 10 and 30 times faster than in the remainder of the timber. Identifying these efficient transport pathways offers scope to improve and extend the degree to which timber properties are enhanced at an industrial scale through processes to impregnate timber.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-020-01540-8</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9443-3573</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3913 |
ispartof | Transport in porous media, 2021-02, Vol.136 (3), p.813-830 |
issn | 0169-3913 1573-1634 |
language | eng |
recordid | cdi_proquest_journals_2491437473 |
source | SpringerNature Journals |
subjects | Chemical treatment Civil Engineering Classical and Continuum Physics Computational fluid dynamics Computed tomography Earth and Environmental Science Earth Sciences Fluid flow Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology/Water Resources Industrial Chemistry/Chemical Engineering Kilns Mechanical properties Three dimensional analysis X ray imagery |
title | Identifying Efficient Transport Pathways in Early-Wood Timber: Insights from 3D X-ray CT Imaging of Softwood in the Presence of Flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Efficient%20Transport%20Pathways%20in%20Early-Wood%20Timber:%20Insights%20from%203D%20X-ray%20CT%20Imaging%20of%20Softwood%20in%20the%20Presence%20of%20Flow&rft.jtitle=Transport%20in%20porous%20media&rft.au=Burridge,%20H.%20C.&rft.date=2021-02-01&rft.volume=136&rft.issue=3&rft.spage=813&rft.epage=830&rft.pages=813-830&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-020-01540-8&rft_dat=%3Cproquest_cross%3E2491437473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491437473&rft_id=info:pmid/&rfr_iscdi=true |