Fracture toughness characteristics of additively manufactured Ti–6Al–4V lattices

Metallic lattice structures are well known for having high specific elastic moduli and strength. However, very little is understood about their resistance to fracture. In this work Ti–6Al–4V lattice structures are additively manufactured by selective laser melting and their fracture toughness charac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of mechanics, A, Solids A, Solids, 2021-03, Vol.86, p.104170, Article 104170
Hauptverfasser: Daynes, Stephen, Lifton, Joseph, Lu, Wen Feng, Wei, Jun, Feih, Stefanie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104170
container_title European journal of mechanics, A, Solids
container_volume 86
creator Daynes, Stephen
Lifton, Joseph
Lu, Wen Feng
Wei, Jun
Feih, Stefanie
description Metallic lattice structures are well known for having high specific elastic moduli and strength. However, very little is understood about their resistance to fracture. In this work Ti–6Al–4V lattice structures are additively manufactured by selective laser melting and their fracture toughness characteristics are investigated. Resistance to fracture was determined under Mode-I loading at static rates using an extended compact tension (EC(T)) specimen, modified to contain lattice cells. The lattices consist of octet cells with a 3.5 mm edge length and relative densities ranging from 25% to 56%. Toughness is shown to increase by a power law with relative density and this trend was also obtained with finite element models. A new functional grading optimisation methodology is also presented for increasing fracture toughness. The size optimisation results in a functionally graded lattice whereby lattice truss diameters become the design variables. After size optimisation, initiation fracture toughness increases by up to 37%. [Display omitted] •Novel optimisation method for generating lattices with high fracture toughness.•Crack size effect on toughness is suppressed by tailoring lattice truss diameters.•Additively manufactured lattices validate FE models with good agreement.
doi_str_mv 10.1016/j.euromechsol.2020.104170
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491200214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0997753820305519</els_id><sourcerecordid>2491200214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-55bc593dfd86a3754f8cde89005d75ddcceb54fa20916a6a80319c88378a7e0d3</originalsourceid><addsrcrecordid>eNqNkEFOwzAQRS0EEqVwhyDWKXYcx_ayqiggVWJT2FquPaGO0rrYSaXuuAM35CQ4CguWbGakr_9m9D9CtwTPCCbVfTODPvgdmG307azAxaCXhOMzNCGC05wXgp2jCZaS55xRcYmuYmwwTs6CTNB6GbTp-gBZ5_v37R5izMxWDyIEFztnYubrTFvrOneE9pTt9L6vR8Zma_f9-VXN2zTLt6zVXQIgXqOLWrcRbn73FL0uH9aLp3z18vi8mK9yQ0vZ5YxtDJPU1lZUmnJW1sJYEBJjZjmz1hjYJFEXWJJKV1pgSqQRgnKhOWBLp-huvHsI_qOH2KnG92GfXqqilKRIIUmZXHJ0meBjDFCrQ3A7HU6KYDWUqBr1p0Q1lKjGEhO7GFlIMY4OgorGwd6AdQFMp6x3_7jyA-f6g7k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491200214</pqid></control><display><type>article</type><title>Fracture toughness characteristics of additively manufactured Ti–6Al–4V lattices</title><source>Elsevier ScienceDirect Journals</source><creator>Daynes, Stephen ; Lifton, Joseph ; Lu, Wen Feng ; Wei, Jun ; Feih, Stefanie</creator><creatorcontrib>Daynes, Stephen ; Lifton, Joseph ; Lu, Wen Feng ; Wei, Jun ; Feih, Stefanie</creatorcontrib><description>Metallic lattice structures are well known for having high specific elastic moduli and strength. However, very little is understood about their resistance to fracture. In this work Ti–6Al–4V lattice structures are additively manufactured by selective laser melting and their fracture toughness characteristics are investigated. Resistance to fracture was determined under Mode-I loading at static rates using an extended compact tension (EC(T)) specimen, modified to contain lattice cells. The lattices consist of octet cells with a 3.5 mm edge length and relative densities ranging from 25% to 56%. Toughness is shown to increase by a power law with relative density and this trend was also obtained with finite element models. A new functional grading optimisation methodology is also presented for increasing fracture toughness. The size optimisation results in a functionally graded lattice whereby lattice truss diameters become the design variables. After size optimisation, initiation fracture toughness increases by up to 37%. [Display omitted] •Novel optimisation method for generating lattices with high fracture toughness.•Crack size effect on toughness is suppressed by tailoring lattice truss diameters.•Additively manufactured lattices validate FE models with good agreement.</description><identifier>ISSN: 0997-7538</identifier><identifier>EISSN: 1873-7285</identifier><identifier>DOI: 10.1016/j.euromechsol.2020.104170</identifier><language>eng</language><publisher>Berlin: Elsevier Masson SAS</publisher><subject>Additive manufacturing ; Compact tension ; Crack initiation ; Design optimization ; Finite element analysis ; Finite element method ; Fracture toughness ; Functional grading ; Heat treating ; Laser beam melting ; Lattice structures ; Lattice trusses ; Lattices ; Modulus of elasticity ; Titanium base alloys</subject><ispartof>European journal of mechanics, A, Solids, 2021-03, Vol.86, p.104170, Article 104170</ispartof><rights>2020 Elsevier Masson SAS</rights><rights>Copyright Elsevier BV Mar/Apr 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-55bc593dfd86a3754f8cde89005d75ddcceb54fa20916a6a80319c88378a7e0d3</citedby><cites>FETCH-LOGICAL-c349t-55bc593dfd86a3754f8cde89005d75ddcceb54fa20916a6a80319c88378a7e0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0997753820305519$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Daynes, Stephen</creatorcontrib><creatorcontrib>Lifton, Joseph</creatorcontrib><creatorcontrib>Lu, Wen Feng</creatorcontrib><creatorcontrib>Wei, Jun</creatorcontrib><creatorcontrib>Feih, Stefanie</creatorcontrib><title>Fracture toughness characteristics of additively manufactured Ti–6Al–4V lattices</title><title>European journal of mechanics, A, Solids</title><description>Metallic lattice structures are well known for having high specific elastic moduli and strength. However, very little is understood about their resistance to fracture. In this work Ti–6Al–4V lattice structures are additively manufactured by selective laser melting and their fracture toughness characteristics are investigated. Resistance to fracture was determined under Mode-I loading at static rates using an extended compact tension (EC(T)) specimen, modified to contain lattice cells. The lattices consist of octet cells with a 3.5 mm edge length and relative densities ranging from 25% to 56%. Toughness is shown to increase by a power law with relative density and this trend was also obtained with finite element models. A new functional grading optimisation methodology is also presented for increasing fracture toughness. The size optimisation results in a functionally graded lattice whereby lattice truss diameters become the design variables. After size optimisation, initiation fracture toughness increases by up to 37%. [Display omitted] •Novel optimisation method for generating lattices with high fracture toughness.•Crack size effect on toughness is suppressed by tailoring lattice truss diameters.•Additively manufactured lattices validate FE models with good agreement.</description><subject>Additive manufacturing</subject><subject>Compact tension</subject><subject>Crack initiation</subject><subject>Design optimization</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fracture toughness</subject><subject>Functional grading</subject><subject>Heat treating</subject><subject>Laser beam melting</subject><subject>Lattice structures</subject><subject>Lattice trusses</subject><subject>Lattices</subject><subject>Modulus of elasticity</subject><subject>Titanium base alloys</subject><issn>0997-7538</issn><issn>1873-7285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkEFOwzAQRS0EEqVwhyDWKXYcx_ayqiggVWJT2FquPaGO0rrYSaXuuAM35CQ4CguWbGakr_9m9D9CtwTPCCbVfTODPvgdmG307azAxaCXhOMzNCGC05wXgp2jCZaS55xRcYmuYmwwTs6CTNB6GbTp-gBZ5_v37R5izMxWDyIEFztnYubrTFvrOneE9pTt9L6vR8Zma_f9-VXN2zTLt6zVXQIgXqOLWrcRbn73FL0uH9aLp3z18vi8mK9yQ0vZ5YxtDJPU1lZUmnJW1sJYEBJjZjmz1hjYJFEXWJJKV1pgSqQRgnKhOWBLp-huvHsI_qOH2KnG92GfXqqilKRIIUmZXHJ0meBjDFCrQ3A7HU6KYDWUqBr1p0Q1lKjGEhO7GFlIMY4OgorGwd6AdQFMp6x3_7jyA-f6g7k</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Daynes, Stephen</creator><creator>Lifton, Joseph</creator><creator>Lu, Wen Feng</creator><creator>Wei, Jun</creator><creator>Feih, Stefanie</creator><general>Elsevier Masson SAS</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>202103</creationdate><title>Fracture toughness characteristics of additively manufactured Ti–6Al–4V lattices</title><author>Daynes, Stephen ; Lifton, Joseph ; Lu, Wen Feng ; Wei, Jun ; Feih, Stefanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-55bc593dfd86a3754f8cde89005d75ddcceb54fa20916a6a80319c88378a7e0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additive manufacturing</topic><topic>Compact tension</topic><topic>Crack initiation</topic><topic>Design optimization</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fracture toughness</topic><topic>Functional grading</topic><topic>Heat treating</topic><topic>Laser beam melting</topic><topic>Lattice structures</topic><topic>Lattice trusses</topic><topic>Lattices</topic><topic>Modulus of elasticity</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daynes, Stephen</creatorcontrib><creatorcontrib>Lifton, Joseph</creatorcontrib><creatorcontrib>Lu, Wen Feng</creatorcontrib><creatorcontrib>Wei, Jun</creatorcontrib><creatorcontrib>Feih, Stefanie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>European journal of mechanics, A, Solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daynes, Stephen</au><au>Lifton, Joseph</au><au>Lu, Wen Feng</au><au>Wei, Jun</au><au>Feih, Stefanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture toughness characteristics of additively manufactured Ti–6Al–4V lattices</atitle><jtitle>European journal of mechanics, A, Solids</jtitle><date>2021-03</date><risdate>2021</risdate><volume>86</volume><spage>104170</spage><pages>104170-</pages><artnum>104170</artnum><issn>0997-7538</issn><eissn>1873-7285</eissn><abstract>Metallic lattice structures are well known for having high specific elastic moduli and strength. However, very little is understood about their resistance to fracture. In this work Ti–6Al–4V lattice structures are additively manufactured by selective laser melting and their fracture toughness characteristics are investigated. Resistance to fracture was determined under Mode-I loading at static rates using an extended compact tension (EC(T)) specimen, modified to contain lattice cells. The lattices consist of octet cells with a 3.5 mm edge length and relative densities ranging from 25% to 56%. Toughness is shown to increase by a power law with relative density and this trend was also obtained with finite element models. A new functional grading optimisation methodology is also presented for increasing fracture toughness. The size optimisation results in a functionally graded lattice whereby lattice truss diameters become the design variables. After size optimisation, initiation fracture toughness increases by up to 37%. [Display omitted] •Novel optimisation method for generating lattices with high fracture toughness.•Crack size effect on toughness is suppressed by tailoring lattice truss diameters.•Additively manufactured lattices validate FE models with good agreement.</abstract><cop>Berlin</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.euromechsol.2020.104170</doi></addata></record>
fulltext fulltext
identifier ISSN: 0997-7538
ispartof European journal of mechanics, A, Solids, 2021-03, Vol.86, p.104170, Article 104170
issn 0997-7538
1873-7285
language eng
recordid cdi_proquest_journals_2491200214
source Elsevier ScienceDirect Journals
subjects Additive manufacturing
Compact tension
Crack initiation
Design optimization
Finite element analysis
Finite element method
Fracture toughness
Functional grading
Heat treating
Laser beam melting
Lattice structures
Lattice trusses
Lattices
Modulus of elasticity
Titanium base alloys
title Fracture toughness characteristics of additively manufactured Ti–6Al–4V lattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T19%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20toughness%20characteristics%20of%20additively%20manufactured%20Ti%E2%80%936Al%E2%80%934V%20lattices&rft.jtitle=European%20journal%20of%20mechanics,%20A,%20Solids&rft.au=Daynes,%20Stephen&rft.date=2021-03&rft.volume=86&rft.spage=104170&rft.pages=104170-&rft.artnum=104170&rft.issn=0997-7538&rft.eissn=1873-7285&rft_id=info:doi/10.1016/j.euromechsol.2020.104170&rft_dat=%3Cproquest_cross%3E2491200214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491200214&rft_id=info:pmid/&rft_els_id=S0997753820305519&rfr_iscdi=true