Fracture toughness characteristics of additively manufactured Ti–6Al–4V lattices
Metallic lattice structures are well known for having high specific elastic moduli and strength. However, very little is understood about their resistance to fracture. In this work Ti–6Al–4V lattice structures are additively manufactured by selective laser melting and their fracture toughness charac...
Gespeichert in:
Veröffentlicht in: | European journal of mechanics, A, Solids A, Solids, 2021-03, Vol.86, p.104170, Article 104170 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 104170 |
container_title | European journal of mechanics, A, Solids |
container_volume | 86 |
creator | Daynes, Stephen Lifton, Joseph Lu, Wen Feng Wei, Jun Feih, Stefanie |
description | Metallic lattice structures are well known for having high specific elastic moduli and strength. However, very little is understood about their resistance to fracture. In this work Ti–6Al–4V lattice structures are additively manufactured by selective laser melting and their fracture toughness characteristics are investigated. Resistance to fracture was determined under Mode-I loading at static rates using an extended compact tension (EC(T)) specimen, modified to contain lattice cells. The lattices consist of octet cells with a 3.5 mm edge length and relative densities ranging from 25% to 56%. Toughness is shown to increase by a power law with relative density and this trend was also obtained with finite element models. A new functional grading optimisation methodology is also presented for increasing fracture toughness. The size optimisation results in a functionally graded lattice whereby lattice truss diameters become the design variables. After size optimisation, initiation fracture toughness increases by up to 37%.
[Display omitted]
•Novel optimisation method for generating lattices with high fracture toughness.•Crack size effect on toughness is suppressed by tailoring lattice truss diameters.•Additively manufactured lattices validate FE models with good agreement. |
doi_str_mv | 10.1016/j.euromechsol.2020.104170 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491200214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0997753820305519</els_id><sourcerecordid>2491200214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-55bc593dfd86a3754f8cde89005d75ddcceb54fa20916a6a80319c88378a7e0d3</originalsourceid><addsrcrecordid>eNqNkEFOwzAQRS0EEqVwhyDWKXYcx_ayqiggVWJT2FquPaGO0rrYSaXuuAM35CQ4CguWbGakr_9m9D9CtwTPCCbVfTODPvgdmG307azAxaCXhOMzNCGC05wXgp2jCZaS55xRcYmuYmwwTs6CTNB6GbTp-gBZ5_v37R5izMxWDyIEFztnYubrTFvrOneE9pTt9L6vR8Zma_f9-VXN2zTLt6zVXQIgXqOLWrcRbn73FL0uH9aLp3z18vi8mK9yQ0vZ5YxtDJPU1lZUmnJW1sJYEBJjZjmz1hjYJFEXWJJKV1pgSqQRgnKhOWBLp-huvHsI_qOH2KnG92GfXqqilKRIIUmZXHJ0meBjDFCrQ3A7HU6KYDWUqBr1p0Q1lKjGEhO7GFlIMY4OgorGwd6AdQFMp6x3_7jyA-f6g7k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491200214</pqid></control><display><type>article</type><title>Fracture toughness characteristics of additively manufactured Ti–6Al–4V lattices</title><source>Elsevier ScienceDirect Journals</source><creator>Daynes, Stephen ; Lifton, Joseph ; Lu, Wen Feng ; Wei, Jun ; Feih, Stefanie</creator><creatorcontrib>Daynes, Stephen ; Lifton, Joseph ; Lu, Wen Feng ; Wei, Jun ; Feih, Stefanie</creatorcontrib><description>Metallic lattice structures are well known for having high specific elastic moduli and strength. However, very little is understood about their resistance to fracture. In this work Ti–6Al–4V lattice structures are additively manufactured by selective laser melting and their fracture toughness characteristics are investigated. Resistance to fracture was determined under Mode-I loading at static rates using an extended compact tension (EC(T)) specimen, modified to contain lattice cells. The lattices consist of octet cells with a 3.5 mm edge length and relative densities ranging from 25% to 56%. Toughness is shown to increase by a power law with relative density and this trend was also obtained with finite element models. A new functional grading optimisation methodology is also presented for increasing fracture toughness. The size optimisation results in a functionally graded lattice whereby lattice truss diameters become the design variables. After size optimisation, initiation fracture toughness increases by up to 37%.
[Display omitted]
•Novel optimisation method for generating lattices with high fracture toughness.•Crack size effect on toughness is suppressed by tailoring lattice truss diameters.•Additively manufactured lattices validate FE models with good agreement.</description><identifier>ISSN: 0997-7538</identifier><identifier>EISSN: 1873-7285</identifier><identifier>DOI: 10.1016/j.euromechsol.2020.104170</identifier><language>eng</language><publisher>Berlin: Elsevier Masson SAS</publisher><subject>Additive manufacturing ; Compact tension ; Crack initiation ; Design optimization ; Finite element analysis ; Finite element method ; Fracture toughness ; Functional grading ; Heat treating ; Laser beam melting ; Lattice structures ; Lattice trusses ; Lattices ; Modulus of elasticity ; Titanium base alloys</subject><ispartof>European journal of mechanics, A, Solids, 2021-03, Vol.86, p.104170, Article 104170</ispartof><rights>2020 Elsevier Masson SAS</rights><rights>Copyright Elsevier BV Mar/Apr 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-55bc593dfd86a3754f8cde89005d75ddcceb54fa20916a6a80319c88378a7e0d3</citedby><cites>FETCH-LOGICAL-c349t-55bc593dfd86a3754f8cde89005d75ddcceb54fa20916a6a80319c88378a7e0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0997753820305519$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Daynes, Stephen</creatorcontrib><creatorcontrib>Lifton, Joseph</creatorcontrib><creatorcontrib>Lu, Wen Feng</creatorcontrib><creatorcontrib>Wei, Jun</creatorcontrib><creatorcontrib>Feih, Stefanie</creatorcontrib><title>Fracture toughness characteristics of additively manufactured Ti–6Al–4V lattices</title><title>European journal of mechanics, A, Solids</title><description>Metallic lattice structures are well known for having high specific elastic moduli and strength. However, very little is understood about their resistance to fracture. In this work Ti–6Al–4V lattice structures are additively manufactured by selective laser melting and their fracture toughness characteristics are investigated. Resistance to fracture was determined under Mode-I loading at static rates using an extended compact tension (EC(T)) specimen, modified to contain lattice cells. The lattices consist of octet cells with a 3.5 mm edge length and relative densities ranging from 25% to 56%. Toughness is shown to increase by a power law with relative density and this trend was also obtained with finite element models. A new functional grading optimisation methodology is also presented for increasing fracture toughness. The size optimisation results in a functionally graded lattice whereby lattice truss diameters become the design variables. After size optimisation, initiation fracture toughness increases by up to 37%.
[Display omitted]
•Novel optimisation method for generating lattices with high fracture toughness.•Crack size effect on toughness is suppressed by tailoring lattice truss diameters.•Additively manufactured lattices validate FE models with good agreement.</description><subject>Additive manufacturing</subject><subject>Compact tension</subject><subject>Crack initiation</subject><subject>Design optimization</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fracture toughness</subject><subject>Functional grading</subject><subject>Heat treating</subject><subject>Laser beam melting</subject><subject>Lattice structures</subject><subject>Lattice trusses</subject><subject>Lattices</subject><subject>Modulus of elasticity</subject><subject>Titanium base alloys</subject><issn>0997-7538</issn><issn>1873-7285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkEFOwzAQRS0EEqVwhyDWKXYcx_ayqiggVWJT2FquPaGO0rrYSaXuuAM35CQ4CguWbGakr_9m9D9CtwTPCCbVfTODPvgdmG307azAxaCXhOMzNCGC05wXgp2jCZaS55xRcYmuYmwwTs6CTNB6GbTp-gBZ5_v37R5izMxWDyIEFztnYubrTFvrOneE9pTt9L6vR8Zma_f9-VXN2zTLt6zVXQIgXqOLWrcRbn73FL0uH9aLp3z18vi8mK9yQ0vZ5YxtDJPU1lZUmnJW1sJYEBJjZjmz1hjYJFEXWJJKV1pgSqQRgnKhOWBLp-huvHsI_qOH2KnG92GfXqqilKRIIUmZXHJ0meBjDFCrQ3A7HU6KYDWUqBr1p0Q1lKjGEhO7GFlIMY4OgorGwd6AdQFMp6x3_7jyA-f6g7k</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Daynes, Stephen</creator><creator>Lifton, Joseph</creator><creator>Lu, Wen Feng</creator><creator>Wei, Jun</creator><creator>Feih, Stefanie</creator><general>Elsevier Masson SAS</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>202103</creationdate><title>Fracture toughness characteristics of additively manufactured Ti–6Al–4V lattices</title><author>Daynes, Stephen ; Lifton, Joseph ; Lu, Wen Feng ; Wei, Jun ; Feih, Stefanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-55bc593dfd86a3754f8cde89005d75ddcceb54fa20916a6a80319c88378a7e0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additive manufacturing</topic><topic>Compact tension</topic><topic>Crack initiation</topic><topic>Design optimization</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fracture toughness</topic><topic>Functional grading</topic><topic>Heat treating</topic><topic>Laser beam melting</topic><topic>Lattice structures</topic><topic>Lattice trusses</topic><topic>Lattices</topic><topic>Modulus of elasticity</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daynes, Stephen</creatorcontrib><creatorcontrib>Lifton, Joseph</creatorcontrib><creatorcontrib>Lu, Wen Feng</creatorcontrib><creatorcontrib>Wei, Jun</creatorcontrib><creatorcontrib>Feih, Stefanie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>European journal of mechanics, A, Solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daynes, Stephen</au><au>Lifton, Joseph</au><au>Lu, Wen Feng</au><au>Wei, Jun</au><au>Feih, Stefanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture toughness characteristics of additively manufactured Ti–6Al–4V lattices</atitle><jtitle>European journal of mechanics, A, Solids</jtitle><date>2021-03</date><risdate>2021</risdate><volume>86</volume><spage>104170</spage><pages>104170-</pages><artnum>104170</artnum><issn>0997-7538</issn><eissn>1873-7285</eissn><abstract>Metallic lattice structures are well known for having high specific elastic moduli and strength. However, very little is understood about their resistance to fracture. In this work Ti–6Al–4V lattice structures are additively manufactured by selective laser melting and their fracture toughness characteristics are investigated. Resistance to fracture was determined under Mode-I loading at static rates using an extended compact tension (EC(T)) specimen, modified to contain lattice cells. The lattices consist of octet cells with a 3.5 mm edge length and relative densities ranging from 25% to 56%. Toughness is shown to increase by a power law with relative density and this trend was also obtained with finite element models. A new functional grading optimisation methodology is also presented for increasing fracture toughness. The size optimisation results in a functionally graded lattice whereby lattice truss diameters become the design variables. After size optimisation, initiation fracture toughness increases by up to 37%.
[Display omitted]
•Novel optimisation method for generating lattices with high fracture toughness.•Crack size effect on toughness is suppressed by tailoring lattice truss diameters.•Additively manufactured lattices validate FE models with good agreement.</abstract><cop>Berlin</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.euromechsol.2020.104170</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0997-7538 |
ispartof | European journal of mechanics, A, Solids, 2021-03, Vol.86, p.104170, Article 104170 |
issn | 0997-7538 1873-7285 |
language | eng |
recordid | cdi_proquest_journals_2491200214 |
source | Elsevier ScienceDirect Journals |
subjects | Additive manufacturing Compact tension Crack initiation Design optimization Finite element analysis Finite element method Fracture toughness Functional grading Heat treating Laser beam melting Lattice structures Lattice trusses Lattices Modulus of elasticity Titanium base alloys |
title | Fracture toughness characteristics of additively manufactured Ti–6Al–4V lattices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T19%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20toughness%20characteristics%20of%20additively%20manufactured%20Ti%E2%80%936Al%E2%80%934V%20lattices&rft.jtitle=European%20journal%20of%20mechanics,%20A,%20Solids&rft.au=Daynes,%20Stephen&rft.date=2021-03&rft.volume=86&rft.spage=104170&rft.pages=104170-&rft.artnum=104170&rft.issn=0997-7538&rft.eissn=1873-7285&rft_id=info:doi/10.1016/j.euromechsol.2020.104170&rft_dat=%3Cproquest_cross%3E2491200214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491200214&rft_id=info:pmid/&rft_els_id=S0997753820305519&rfr_iscdi=true |