Ultrahigh transverse rupture strength in tungsten-based nanocomposites with minimal lattice misfit and dual microstructure
New-generation structural materials with superior properties are a constant demand in applications involving extreme environments. Here, we demonstrate the fabrication of a high-strength, high-dense W-TaC-Ta2O5 nanocomposite for such applications on a large scale by a simple, cost-effective, scalabl...
Gespeichert in:
Veröffentlicht in: | International journal of refractory metals & hard materials 2021-02, Vol.95, p.105454, Article 105454 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 105454 |
container_title | International journal of refractory metals & hard materials |
container_volume | 95 |
creator | Chakravarty, D. Laxman, N. Jayasree, R. Mane, R.B. Mathiazhagan, S. Srinivas, P.V.V. Das, R. Nagini, M. Eizadjou, M. Venkatesh, L. Ravi, N. Mahapatra, D.R. Vijay, R. Ringer, S.P. Tiwary, C.S. |
description | New-generation structural materials with superior properties are a constant demand in applications involving extreme environments. Here, we demonstrate the fabrication of a high-strength, high-dense W-TaC-Ta2O5 nanocomposite for such applications on a large scale by a simple, cost-effective, scalable, bottom-up powder metallurgy approach using plasma sintering. The first clear microstructural evidence of the scavenging effect of carbide particles in the W-MC composites (M = Ta, Zr, Hf, Ti) is demonstrated through atom probe studies. Localized plastic deformation and the unique stress-induced amorphization in tungsten are observed due to dislocation activities, and these phenomena are corroborated by molecular dynamics (MD) simulations. Optimized composition and processing conditions yield high Vickers hardness ~540 HV10 and super-high transverse rupture strength (TRS) ~ 1650 MPa, in upscaled components of 100 mm diameter. The enhanced mechanical properties are attributed to the cumulative effect of the grain boundary strengthening and dispersion strengthening from the refined tungsten grains and the second phase intragranular nanocrystalline particles, respectively, the coherent particle-matrix interfaces, the low oxygen-segregation at grain boundaries and the ‘dual nanocrystalline-amorphous’ microstructure present in the matrix.
[Display omitted]
•W-TaC composites prepared by spark plasma sintering of size 100 mm diameter.•High density, fine grains yield strength of 1650 MPa and hardness of 540 HV10.•Improved properties explained by grain boundary and dispersion strengthening.•Scavenging effect of TaC for oxygen established through atom probe studies.•Coherent particle/matrix interface and unique dual ‘nano-amorphous’ microstructure |
doi_str_mv | 10.1016/j.ijrmhm.2020.105454 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491198851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263436820303309</els_id><sourcerecordid>2491198851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-5bdec60a01ca72ce503c7827e707ebeb843a9b3b9c15922b17f91dd12a44ad9d3</originalsourceid><addsrcrecordid>eNp9UMtKBDEQDKLg-vgDDwHPs-Y1j1wEWXzBghf3HDJJ726GncyaZBT9ejOMZ09NF1XVXYXQDSVLSmh11y1dF_p9v2SETVApSnGCFoxRXnBJ61O0IKziheBVc44uYuwIIZWs6AL9bA4p6L3b7XGePn5CiIDDeExjABxTAL9Le-w8TqPfxQS-aHUEi732gxn64xBdgoi_XGb1zrteH_BBp-QM5D1uXcLaW2zHjPfOhCF7jmZyv0JnW32IcP03L9Hm6fF99VKs355fVw_rwnAuUlG2FkxFNKFG18xASbipG1ZDTWpooW0E17LlrTS0lIy1tN5Kai1lWghtpeWX6Hb2PYbhY4SYVDeMweeTiglJqWyakmaWmFnTizHAVh1DDhO-FSVqall1am5ZTS2rueUsu59lkBN8OggqGgfegHUBTFJ2cP8b_AKt1Yuc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491198851</pqid></control><display><type>article</type><title>Ultrahigh transverse rupture strength in tungsten-based nanocomposites with minimal lattice misfit and dual microstructure</title><source>Elsevier ScienceDirect Journals</source><creator>Chakravarty, D. ; Laxman, N. ; Jayasree, R. ; Mane, R.B. ; Mathiazhagan, S. ; Srinivas, P.V.V. ; Das, R. ; Nagini, M. ; Eizadjou, M. ; Venkatesh, L. ; Ravi, N. ; Mahapatra, D.R. ; Vijay, R. ; Ringer, S.P. ; Tiwary, C.S.</creator><creatorcontrib>Chakravarty, D. ; Laxman, N. ; Jayasree, R. ; Mane, R.B. ; Mathiazhagan, S. ; Srinivas, P.V.V. ; Das, R. ; Nagini, M. ; Eizadjou, M. ; Venkatesh, L. ; Ravi, N. ; Mahapatra, D.R. ; Vijay, R. ; Ringer, S.P. ; Tiwary, C.S.</creatorcontrib><description>New-generation structural materials with superior properties are a constant demand in applications involving extreme environments. Here, we demonstrate the fabrication of a high-strength, high-dense W-TaC-Ta2O5 nanocomposite for such applications on a large scale by a simple, cost-effective, scalable, bottom-up powder metallurgy approach using plasma sintering. The first clear microstructural evidence of the scavenging effect of carbide particles in the W-MC composites (M = Ta, Zr, Hf, Ti) is demonstrated through atom probe studies. Localized plastic deformation and the unique stress-induced amorphization in tungsten are observed due to dislocation activities, and these phenomena are corroborated by molecular dynamics (MD) simulations. Optimized composition and processing conditions yield high Vickers hardness ~540 HV10 and super-high transverse rupture strength (TRS) ~ 1650 MPa, in upscaled components of 100 mm diameter. The enhanced mechanical properties are attributed to the cumulative effect of the grain boundary strengthening and dispersion strengthening from the refined tungsten grains and the second phase intragranular nanocrystalline particles, respectively, the coherent particle-matrix interfaces, the low oxygen-segregation at grain boundaries and the ‘dual nanocrystalline-amorphous’ microstructure present in the matrix.
[Display omitted]
•W-TaC composites prepared by spark plasma sintering of size 100 mm diameter.•High density, fine grains yield strength of 1650 MPa and hardness of 540 HV10.•Improved properties explained by grain boundary and dispersion strengthening.•Scavenging effect of TaC for oxygen established through atom probe studies.•Coherent particle/matrix interface and unique dual ‘nano-amorphous’ microstructure</description><identifier>ISSN: 0263-4368</identifier><identifier>EISSN: 2213-3917</identifier><identifier>DOI: 10.1016/j.ijrmhm.2020.105454</identifier><language>eng</language><publisher>Shrewsbury: Elsevier Ltd</publisher><subject>Amorphization ; Atom probe tomography ; Creep rupture strength ; Diamond pyramid hardness ; Dispersion strengthening ; Extreme environments ; Grain boundaries ; Grain Boundary Segregation ; Mechanical properties ; Microstructure ; Molecular dynamics ; Molecular dynamics simulations ; Nanocomposites ; Nanocrystals ; Particle-matrix interfaces ; Particulate composites ; Plasma sintering ; Plastic deformation ; Powder metallurgy ; Scavenging ; Spark plasma sintering ; Strengthening mechanisms ; Tantalum ; Tantalum oxides ; Titanium ; Transverse rupture strength ; Tungsten ; Zirconium</subject><ispartof>International journal of refractory metals & hard materials, 2021-02, Vol.95, p.105454, Article 105454</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-5bdec60a01ca72ce503c7827e707ebeb843a9b3b9c15922b17f91dd12a44ad9d3</citedby><cites>FETCH-LOGICAL-c334t-5bdec60a01ca72ce503c7827e707ebeb843a9b3b9c15922b17f91dd12a44ad9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263436820303309$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Chakravarty, D.</creatorcontrib><creatorcontrib>Laxman, N.</creatorcontrib><creatorcontrib>Jayasree, R.</creatorcontrib><creatorcontrib>Mane, R.B.</creatorcontrib><creatorcontrib>Mathiazhagan, S.</creatorcontrib><creatorcontrib>Srinivas, P.V.V.</creatorcontrib><creatorcontrib>Das, R.</creatorcontrib><creatorcontrib>Nagini, M.</creatorcontrib><creatorcontrib>Eizadjou, M.</creatorcontrib><creatorcontrib>Venkatesh, L.</creatorcontrib><creatorcontrib>Ravi, N.</creatorcontrib><creatorcontrib>Mahapatra, D.R.</creatorcontrib><creatorcontrib>Vijay, R.</creatorcontrib><creatorcontrib>Ringer, S.P.</creatorcontrib><creatorcontrib>Tiwary, C.S.</creatorcontrib><title>Ultrahigh transverse rupture strength in tungsten-based nanocomposites with minimal lattice misfit and dual microstructure</title><title>International journal of refractory metals & hard materials</title><description>New-generation structural materials with superior properties are a constant demand in applications involving extreme environments. Here, we demonstrate the fabrication of a high-strength, high-dense W-TaC-Ta2O5 nanocomposite for such applications on a large scale by a simple, cost-effective, scalable, bottom-up powder metallurgy approach using plasma sintering. The first clear microstructural evidence of the scavenging effect of carbide particles in the W-MC composites (M = Ta, Zr, Hf, Ti) is demonstrated through atom probe studies. Localized plastic deformation and the unique stress-induced amorphization in tungsten are observed due to dislocation activities, and these phenomena are corroborated by molecular dynamics (MD) simulations. Optimized composition and processing conditions yield high Vickers hardness ~540 HV10 and super-high transverse rupture strength (TRS) ~ 1650 MPa, in upscaled components of 100 mm diameter. The enhanced mechanical properties are attributed to the cumulative effect of the grain boundary strengthening and dispersion strengthening from the refined tungsten grains and the second phase intragranular nanocrystalline particles, respectively, the coherent particle-matrix interfaces, the low oxygen-segregation at grain boundaries and the ‘dual nanocrystalline-amorphous’ microstructure present in the matrix.
[Display omitted]
•W-TaC composites prepared by spark plasma sintering of size 100 mm diameter.•High density, fine grains yield strength of 1650 MPa and hardness of 540 HV10.•Improved properties explained by grain boundary and dispersion strengthening.•Scavenging effect of TaC for oxygen established through atom probe studies.•Coherent particle/matrix interface and unique dual ‘nano-amorphous’ microstructure</description><subject>Amorphization</subject><subject>Atom probe tomography</subject><subject>Creep rupture strength</subject><subject>Diamond pyramid hardness</subject><subject>Dispersion strengthening</subject><subject>Extreme environments</subject><subject>Grain boundaries</subject><subject>Grain Boundary Segregation</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Molecular dynamics</subject><subject>Molecular dynamics simulations</subject><subject>Nanocomposites</subject><subject>Nanocrystals</subject><subject>Particle-matrix interfaces</subject><subject>Particulate composites</subject><subject>Plasma sintering</subject><subject>Plastic deformation</subject><subject>Powder metallurgy</subject><subject>Scavenging</subject><subject>Spark plasma sintering</subject><subject>Strengthening mechanisms</subject><subject>Tantalum</subject><subject>Tantalum oxides</subject><subject>Titanium</subject><subject>Transverse rupture strength</subject><subject>Tungsten</subject><subject>Zirconium</subject><issn>0263-4368</issn><issn>2213-3917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKBDEQDKLg-vgDDwHPs-Y1j1wEWXzBghf3HDJJ726GncyaZBT9ejOMZ09NF1XVXYXQDSVLSmh11y1dF_p9v2SETVApSnGCFoxRXnBJ61O0IKziheBVc44uYuwIIZWs6AL9bA4p6L3b7XGePn5CiIDDeExjABxTAL9Le-w8TqPfxQS-aHUEi732gxn64xBdgoi_XGb1zrteH_BBp-QM5D1uXcLaW2zHjPfOhCF7jmZyv0JnW32IcP03L9Hm6fF99VKs355fVw_rwnAuUlG2FkxFNKFG18xASbipG1ZDTWpooW0E17LlrTS0lIy1tN5Kai1lWghtpeWX6Hb2PYbhY4SYVDeMweeTiglJqWyakmaWmFnTizHAVh1DDhO-FSVqall1am5ZTS2rueUsu59lkBN8OggqGgfegHUBTFJ2cP8b_AKt1Yuc</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Chakravarty, D.</creator><creator>Laxman, N.</creator><creator>Jayasree, R.</creator><creator>Mane, R.B.</creator><creator>Mathiazhagan, S.</creator><creator>Srinivas, P.V.V.</creator><creator>Das, R.</creator><creator>Nagini, M.</creator><creator>Eizadjou, M.</creator><creator>Venkatesh, L.</creator><creator>Ravi, N.</creator><creator>Mahapatra, D.R.</creator><creator>Vijay, R.</creator><creator>Ringer, S.P.</creator><creator>Tiwary, C.S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202102</creationdate><title>Ultrahigh transverse rupture strength in tungsten-based nanocomposites with minimal lattice misfit and dual microstructure</title><author>Chakravarty, D. ; Laxman, N. ; Jayasree, R. ; Mane, R.B. ; Mathiazhagan, S. ; Srinivas, P.V.V. ; Das, R. ; Nagini, M. ; Eizadjou, M. ; Venkatesh, L. ; Ravi, N. ; Mahapatra, D.R. ; Vijay, R. ; Ringer, S.P. ; Tiwary, C.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-5bdec60a01ca72ce503c7827e707ebeb843a9b3b9c15922b17f91dd12a44ad9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amorphization</topic><topic>Atom probe tomography</topic><topic>Creep rupture strength</topic><topic>Diamond pyramid hardness</topic><topic>Dispersion strengthening</topic><topic>Extreme environments</topic><topic>Grain boundaries</topic><topic>Grain Boundary Segregation</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Molecular dynamics</topic><topic>Molecular dynamics simulations</topic><topic>Nanocomposites</topic><topic>Nanocrystals</topic><topic>Particle-matrix interfaces</topic><topic>Particulate composites</topic><topic>Plasma sintering</topic><topic>Plastic deformation</topic><topic>Powder metallurgy</topic><topic>Scavenging</topic><topic>Spark plasma sintering</topic><topic>Strengthening mechanisms</topic><topic>Tantalum</topic><topic>Tantalum oxides</topic><topic>Titanium</topic><topic>Transverse rupture strength</topic><topic>Tungsten</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakravarty, D.</creatorcontrib><creatorcontrib>Laxman, N.</creatorcontrib><creatorcontrib>Jayasree, R.</creatorcontrib><creatorcontrib>Mane, R.B.</creatorcontrib><creatorcontrib>Mathiazhagan, S.</creatorcontrib><creatorcontrib>Srinivas, P.V.V.</creatorcontrib><creatorcontrib>Das, R.</creatorcontrib><creatorcontrib>Nagini, M.</creatorcontrib><creatorcontrib>Eizadjou, M.</creatorcontrib><creatorcontrib>Venkatesh, L.</creatorcontrib><creatorcontrib>Ravi, N.</creatorcontrib><creatorcontrib>Mahapatra, D.R.</creatorcontrib><creatorcontrib>Vijay, R.</creatorcontrib><creatorcontrib>Ringer, S.P.</creatorcontrib><creatorcontrib>Tiwary, C.S.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of refractory metals & hard materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakravarty, D.</au><au>Laxman, N.</au><au>Jayasree, R.</au><au>Mane, R.B.</au><au>Mathiazhagan, S.</au><au>Srinivas, P.V.V.</au><au>Das, R.</au><au>Nagini, M.</au><au>Eizadjou, M.</au><au>Venkatesh, L.</au><au>Ravi, N.</au><au>Mahapatra, D.R.</au><au>Vijay, R.</au><au>Ringer, S.P.</au><au>Tiwary, C.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh transverse rupture strength in tungsten-based nanocomposites with minimal lattice misfit and dual microstructure</atitle><jtitle>International journal of refractory metals & hard materials</jtitle><date>2021-02</date><risdate>2021</risdate><volume>95</volume><spage>105454</spage><pages>105454-</pages><artnum>105454</artnum><issn>0263-4368</issn><eissn>2213-3917</eissn><abstract>New-generation structural materials with superior properties are a constant demand in applications involving extreme environments. Here, we demonstrate the fabrication of a high-strength, high-dense W-TaC-Ta2O5 nanocomposite for such applications on a large scale by a simple, cost-effective, scalable, bottom-up powder metallurgy approach using plasma sintering. The first clear microstructural evidence of the scavenging effect of carbide particles in the W-MC composites (M = Ta, Zr, Hf, Ti) is demonstrated through atom probe studies. Localized plastic deformation and the unique stress-induced amorphization in tungsten are observed due to dislocation activities, and these phenomena are corroborated by molecular dynamics (MD) simulations. Optimized composition and processing conditions yield high Vickers hardness ~540 HV10 and super-high transverse rupture strength (TRS) ~ 1650 MPa, in upscaled components of 100 mm diameter. The enhanced mechanical properties are attributed to the cumulative effect of the grain boundary strengthening and dispersion strengthening from the refined tungsten grains and the second phase intragranular nanocrystalline particles, respectively, the coherent particle-matrix interfaces, the low oxygen-segregation at grain boundaries and the ‘dual nanocrystalline-amorphous’ microstructure present in the matrix.
[Display omitted]
•W-TaC composites prepared by spark plasma sintering of size 100 mm diameter.•High density, fine grains yield strength of 1650 MPa and hardness of 540 HV10.•Improved properties explained by grain boundary and dispersion strengthening.•Scavenging effect of TaC for oxygen established through atom probe studies.•Coherent particle/matrix interface and unique dual ‘nano-amorphous’ microstructure</abstract><cop>Shrewsbury</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmhm.2020.105454</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-4368 |
ispartof | International journal of refractory metals & hard materials, 2021-02, Vol.95, p.105454, Article 105454 |
issn | 0263-4368 2213-3917 |
language | eng |
recordid | cdi_proquest_journals_2491198851 |
source | Elsevier ScienceDirect Journals |
subjects | Amorphization Atom probe tomography Creep rupture strength Diamond pyramid hardness Dispersion strengthening Extreme environments Grain boundaries Grain Boundary Segregation Mechanical properties Microstructure Molecular dynamics Molecular dynamics simulations Nanocomposites Nanocrystals Particle-matrix interfaces Particulate composites Plasma sintering Plastic deformation Powder metallurgy Scavenging Spark plasma sintering Strengthening mechanisms Tantalum Tantalum oxides Titanium Transverse rupture strength Tungsten Zirconium |
title | Ultrahigh transverse rupture strength in tungsten-based nanocomposites with minimal lattice misfit and dual microstructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh%20transverse%20rupture%20strength%20in%20tungsten-based%20nanocomposites%20with%20minimal%20lattice%20misfit%20and%20dual%20microstructure&rft.jtitle=International%20journal%20of%20refractory%20metals%20&%20hard%20materials&rft.au=Chakravarty,%20D.&rft.date=2021-02&rft.volume=95&rft.spage=105454&rft.pages=105454-&rft.artnum=105454&rft.issn=0263-4368&rft.eissn=2213-3917&rft_id=info:doi/10.1016/j.ijrmhm.2020.105454&rft_dat=%3Cproquest_cross%3E2491198851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491198851&rft_id=info:pmid/&rft_els_id=S0263436820303309&rfr_iscdi=true |