One-step production of carbon nanocages for supercapacitors and sodium-ion batteries
Utilizing biomass to produce high-performance energy-storage materials has been the focus of increasing attention, thanks to the low cost, renewability, environmental friendliness, and inherent nature of certain biomass. However, the applications of biomass-derived carbons are commonly confined by t...
Gespeichert in:
Veröffentlicht in: | Journal of electroanalytical chemistry (Lausanne, Switzerland) Switzerland), 2020-12, Vol.878, p.114551, Article 114551 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 114551 |
container_title | Journal of electroanalytical chemistry (Lausanne, Switzerland) |
container_volume | 878 |
creator | Zhao, Gongyuan Yu, Dengfeng Chen, Chong Sun, Lei Yang, Chenhui Zhang, Hong Du, Baosheng Sun, Feifei Sun, Ye Yu, Miao |
description | Utilizing biomass to produce high-performance energy-storage materials has been the focus of increasing attention, thanks to the low cost, renewability, environmental friendliness, and inherent nature of certain biomass. However, the applications of biomass-derived carbons are commonly confined by their low electrical conductivity and ion diffusion kinetics. In this work, we report one-step strategy of synchronous activation and graphitization, using a new activating agent, i.e. KMnO4, to produce three-dimensional (3D) hierarchical porous framework of carbon nanocages (FCNC) from biomass for both supercapacitors and sodium-ion batteries (SIBs) applications. As a result, high specific capacitances (490.7 F·g−1 at a charge density of 1.0 A·g−1 in a three-electrode system using 6 mol·L−1 KOH aqueous as electrolyte) and high energy density (92.0 Wh kg−1 at power density of 1800 W·kg−1 using EMIMBF4 electrolyte) have been demonstrated when applying FCNC in supercapacitors, and high reversible capacity of 318.2 mAh·g−1 at 50 mA·g−1 has been achieved in SIBs. Although the rate performance is one of the primary concerns of SIBs, a high retention rate of 92% is realized in the present case after 1000 cycles at 10 A·g−1. Excitingly, even at 10 A·g−1, the reversible capacity delivered by FCNC maintains to be as high as 81.6 mAh·g−1.
•3D hierarchical porous framework of carbon nanocages are derived from biomass.•Simultaneous templating, activation, and catalysis induce favorable hollow structure, interlayer spacing and graphitization.•The product demonstrates high performance for both supercapacitors and sodium-ion batteries.•490.7 F·g−1 at 1.0 A·g−1 and 92.0 Wh·kg−1 at 1800 W·kg−1 applied in supercapacitors.•318.2 mAh·g−1 at 50 mA·g−1 and retention rate of 92% after 1000 cycles at 10 A·g−1 in batteries. |
doi_str_mv | 10.1016/j.jelechem.2020.114551 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491198647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1572665720307797</els_id><sourcerecordid>2491198647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-b0b283cfe83f5b72be9107616a7b12227b7ed9f7ae40af4d018d1c0f1921b6e03</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BSm47pibtkm7U8QXDMxmXIckvdGUmaYmqeC_N8Po2tU9XM65j4-Qa6AroMBvh9WAOzQfuF8xynIT6qaBE7KAVlQla3h3mnUjWMl5I87JRYwDpaxtgS3IdjNiGRNOxRR8P5vk_Fh4WxgVdFajGr1R7xgL60MR5wmDUZMyLvkQCzX2RfS9m_flIaZVShgcxktyZtUu4tVvXZK3p8ftw0u53jy_PtyvS1PVNJWaatZWxmJb2UYLprEDKjhwJTQwxoQW2HdWKKypsnVPoe3BUAsdA82RVktyc5ybb_-cMSY5-DmMeaVkdQfQtbwW2cWPLhN8jAGtnILbq_AtgcoDQTnIP4LyQFAeCebg3TGI-Ycvh0FG43A02LuAJsneu_9G_ABUFX3K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491198647</pqid></control><display><type>article</type><title>One-step production of carbon nanocages for supercapacitors and sodium-ion batteries</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhao, Gongyuan ; Yu, Dengfeng ; Chen, Chong ; Sun, Lei ; Yang, Chenhui ; Zhang, Hong ; Du, Baosheng ; Sun, Feifei ; Sun, Ye ; Yu, Miao</creator><creatorcontrib>Zhao, Gongyuan ; Yu, Dengfeng ; Chen, Chong ; Sun, Lei ; Yang, Chenhui ; Zhang, Hong ; Du, Baosheng ; Sun, Feifei ; Sun, Ye ; Yu, Miao</creatorcontrib><description>Utilizing biomass to produce high-performance energy-storage materials has been the focus of increasing attention, thanks to the low cost, renewability, environmental friendliness, and inherent nature of certain biomass. However, the applications of biomass-derived carbons are commonly confined by their low electrical conductivity and ion diffusion kinetics. In this work, we report one-step strategy of synchronous activation and graphitization, using a new activating agent, i.e. KMnO4, to produce three-dimensional (3D) hierarchical porous framework of carbon nanocages (FCNC) from biomass for both supercapacitors and sodium-ion batteries (SIBs) applications. As a result, high specific capacitances (490.7 F·g−1 at a charge density of 1.0 A·g−1 in a three-electrode system using 6 mol·L−1 KOH aqueous as electrolyte) and high energy density (92.0 Wh kg−1 at power density of 1800 W·kg−1 using EMIMBF4 electrolyte) have been demonstrated when applying FCNC in supercapacitors, and high reversible capacity of 318.2 mAh·g−1 at 50 mA·g−1 has been achieved in SIBs. Although the rate performance is one of the primary concerns of SIBs, a high retention rate of 92% is realized in the present case after 1000 cycles at 10 A·g−1. Excitingly, even at 10 A·g−1, the reversible capacity delivered by FCNC maintains to be as high as 81.6 mAh·g−1.
•3D hierarchical porous framework of carbon nanocages are derived from biomass.•Simultaneous templating, activation, and catalysis induce favorable hollow structure, interlayer spacing and graphitization.•The product demonstrates high performance for both supercapacitors and sodium-ion batteries.•490.7 F·g−1 at 1.0 A·g−1 and 92.0 Wh·kg−1 at 1800 W·kg−1 applied in supercapacitors.•318.2 mAh·g−1 at 50 mA·g−1 and retention rate of 92% after 1000 cycles at 10 A·g−1 in batteries.</description><identifier>ISSN: 1572-6657</identifier><identifier>EISSN: 1873-2569</identifier><identifier>DOI: 10.1016/j.jelechem.2020.114551</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Biomass ; Biomass energy production ; Carbon ; Carbon nanocage ; Charge density ; Electrical resistivity ; Electrolytes ; Energy storage ; Flux density ; Graphitization ; Hierarchical porous framework ; Ion diffusion ; Potassium permanganate ; Rechargeable batteries ; Sodium-ion batteries ; Sodium-ion battery ; Storage batteries ; Supercapacitor ; Supercapacitors</subject><ispartof>Journal of electroanalytical chemistry (Lausanne, Switzerland), 2020-12, Vol.878, p.114551, Article 114551</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Dec 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-b0b283cfe83f5b72be9107616a7b12227b7ed9f7ae40af4d018d1c0f1921b6e03</citedby><cites>FETCH-LOGICAL-c340t-b0b283cfe83f5b72be9107616a7b12227b7ed9f7ae40af4d018d1c0f1921b6e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jelechem.2020.114551$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Zhao, Gongyuan</creatorcontrib><creatorcontrib>Yu, Dengfeng</creatorcontrib><creatorcontrib>Chen, Chong</creatorcontrib><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Yang, Chenhui</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Du, Baosheng</creatorcontrib><creatorcontrib>Sun, Feifei</creatorcontrib><creatorcontrib>Sun, Ye</creatorcontrib><creatorcontrib>Yu, Miao</creatorcontrib><title>One-step production of carbon nanocages for supercapacitors and sodium-ion batteries</title><title>Journal of electroanalytical chemistry (Lausanne, Switzerland)</title><description>Utilizing biomass to produce high-performance energy-storage materials has been the focus of increasing attention, thanks to the low cost, renewability, environmental friendliness, and inherent nature of certain biomass. However, the applications of biomass-derived carbons are commonly confined by their low electrical conductivity and ion diffusion kinetics. In this work, we report one-step strategy of synchronous activation and graphitization, using a new activating agent, i.e. KMnO4, to produce three-dimensional (3D) hierarchical porous framework of carbon nanocages (FCNC) from biomass for both supercapacitors and sodium-ion batteries (SIBs) applications. As a result, high specific capacitances (490.7 F·g−1 at a charge density of 1.0 A·g−1 in a three-electrode system using 6 mol·L−1 KOH aqueous as electrolyte) and high energy density (92.0 Wh kg−1 at power density of 1800 W·kg−1 using EMIMBF4 electrolyte) have been demonstrated when applying FCNC in supercapacitors, and high reversible capacity of 318.2 mAh·g−1 at 50 mA·g−1 has been achieved in SIBs. Although the rate performance is one of the primary concerns of SIBs, a high retention rate of 92% is realized in the present case after 1000 cycles at 10 A·g−1. Excitingly, even at 10 A·g−1, the reversible capacity delivered by FCNC maintains to be as high as 81.6 mAh·g−1.
•3D hierarchical porous framework of carbon nanocages are derived from biomass.•Simultaneous templating, activation, and catalysis induce favorable hollow structure, interlayer spacing and graphitization.•The product demonstrates high performance for both supercapacitors and sodium-ion batteries.•490.7 F·g−1 at 1.0 A·g−1 and 92.0 Wh·kg−1 at 1800 W·kg−1 applied in supercapacitors.•318.2 mAh·g−1 at 50 mA·g−1 and retention rate of 92% after 1000 cycles at 10 A·g−1 in batteries.</description><subject>Biomass</subject><subject>Biomass energy production</subject><subject>Carbon</subject><subject>Carbon nanocage</subject><subject>Charge density</subject><subject>Electrical resistivity</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Graphitization</subject><subject>Hierarchical porous framework</subject><subject>Ion diffusion</subject><subject>Potassium permanganate</subject><subject>Rechargeable batteries</subject><subject>Sodium-ion batteries</subject><subject>Sodium-ion battery</subject><subject>Storage batteries</subject><subject>Supercapacitor</subject><subject>Supercapacitors</subject><issn>1572-6657</issn><issn>1873-2569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BSm47pibtkm7U8QXDMxmXIckvdGUmaYmqeC_N8Po2tU9XM65j4-Qa6AroMBvh9WAOzQfuF8xynIT6qaBE7KAVlQla3h3mnUjWMl5I87JRYwDpaxtgS3IdjNiGRNOxRR8P5vk_Fh4WxgVdFajGr1R7xgL60MR5wmDUZMyLvkQCzX2RfS9m_flIaZVShgcxktyZtUu4tVvXZK3p8ftw0u53jy_PtyvS1PVNJWaatZWxmJb2UYLprEDKjhwJTQwxoQW2HdWKKypsnVPoe3BUAsdA82RVktyc5ybb_-cMSY5-DmMeaVkdQfQtbwW2cWPLhN8jAGtnILbq_AtgcoDQTnIP4LyQFAeCebg3TGI-Ycvh0FG43A02LuAJsneu_9G_ABUFX3K</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Zhao, Gongyuan</creator><creator>Yu, Dengfeng</creator><creator>Chen, Chong</creator><creator>Sun, Lei</creator><creator>Yang, Chenhui</creator><creator>Zhang, Hong</creator><creator>Du, Baosheng</creator><creator>Sun, Feifei</creator><creator>Sun, Ye</creator><creator>Yu, Miao</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20201201</creationdate><title>One-step production of carbon nanocages for supercapacitors and sodium-ion batteries</title><author>Zhao, Gongyuan ; Yu, Dengfeng ; Chen, Chong ; Sun, Lei ; Yang, Chenhui ; Zhang, Hong ; Du, Baosheng ; Sun, Feifei ; Sun, Ye ; Yu, Miao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-b0b283cfe83f5b72be9107616a7b12227b7ed9f7ae40af4d018d1c0f1921b6e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomass</topic><topic>Biomass energy production</topic><topic>Carbon</topic><topic>Carbon nanocage</topic><topic>Charge density</topic><topic>Electrical resistivity</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Graphitization</topic><topic>Hierarchical porous framework</topic><topic>Ion diffusion</topic><topic>Potassium permanganate</topic><topic>Rechargeable batteries</topic><topic>Sodium-ion batteries</topic><topic>Sodium-ion battery</topic><topic>Storage batteries</topic><topic>Supercapacitor</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Gongyuan</creatorcontrib><creatorcontrib>Yu, Dengfeng</creatorcontrib><creatorcontrib>Chen, Chong</creatorcontrib><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Yang, Chenhui</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Du, Baosheng</creatorcontrib><creatorcontrib>Sun, Feifei</creatorcontrib><creatorcontrib>Sun, Ye</creatorcontrib><creatorcontrib>Yu, Miao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of electroanalytical chemistry (Lausanne, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Gongyuan</au><au>Yu, Dengfeng</au><au>Chen, Chong</au><au>Sun, Lei</au><au>Yang, Chenhui</au><au>Zhang, Hong</au><au>Du, Baosheng</au><au>Sun, Feifei</au><au>Sun, Ye</au><au>Yu, Miao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-step production of carbon nanocages for supercapacitors and sodium-ion batteries</atitle><jtitle>Journal of electroanalytical chemistry (Lausanne, Switzerland)</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>878</volume><spage>114551</spage><pages>114551-</pages><artnum>114551</artnum><issn>1572-6657</issn><eissn>1873-2569</eissn><abstract>Utilizing biomass to produce high-performance energy-storage materials has been the focus of increasing attention, thanks to the low cost, renewability, environmental friendliness, and inherent nature of certain biomass. However, the applications of biomass-derived carbons are commonly confined by their low electrical conductivity and ion diffusion kinetics. In this work, we report one-step strategy of synchronous activation and graphitization, using a new activating agent, i.e. KMnO4, to produce three-dimensional (3D) hierarchical porous framework of carbon nanocages (FCNC) from biomass for both supercapacitors and sodium-ion batteries (SIBs) applications. As a result, high specific capacitances (490.7 F·g−1 at a charge density of 1.0 A·g−1 in a three-electrode system using 6 mol·L−1 KOH aqueous as electrolyte) and high energy density (92.0 Wh kg−1 at power density of 1800 W·kg−1 using EMIMBF4 electrolyte) have been demonstrated when applying FCNC in supercapacitors, and high reversible capacity of 318.2 mAh·g−1 at 50 mA·g−1 has been achieved in SIBs. Although the rate performance is one of the primary concerns of SIBs, a high retention rate of 92% is realized in the present case after 1000 cycles at 10 A·g−1. Excitingly, even at 10 A·g−1, the reversible capacity delivered by FCNC maintains to be as high as 81.6 mAh·g−1.
•3D hierarchical porous framework of carbon nanocages are derived from biomass.•Simultaneous templating, activation, and catalysis induce favorable hollow structure, interlayer spacing and graphitization.•The product demonstrates high performance for both supercapacitors and sodium-ion batteries.•490.7 F·g−1 at 1.0 A·g−1 and 92.0 Wh·kg−1 at 1800 W·kg−1 applied in supercapacitors.•318.2 mAh·g−1 at 50 mA·g−1 and retention rate of 92% after 1000 cycles at 10 A·g−1 in batteries.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jelechem.2020.114551</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1572-6657 |
ispartof | Journal of electroanalytical chemistry (Lausanne, Switzerland), 2020-12, Vol.878, p.114551, Article 114551 |
issn | 1572-6657 1873-2569 |
language | eng |
recordid | cdi_proquest_journals_2491198647 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Biomass Biomass energy production Carbon Carbon nanocage Charge density Electrical resistivity Electrolytes Energy storage Flux density Graphitization Hierarchical porous framework Ion diffusion Potassium permanganate Rechargeable batteries Sodium-ion batteries Sodium-ion battery Storage batteries Supercapacitor Supercapacitors |
title | One-step production of carbon nanocages for supercapacitors and sodium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-step%20production%20of%20carbon%20nanocages%20for%20supercapacitors%20and%20sodium-ion%20batteries&rft.jtitle=Journal%20of%20electroanalytical%20chemistry%20(Lausanne,%20Switzerland)&rft.au=Zhao,%20Gongyuan&rft.date=2020-12-01&rft.volume=878&rft.spage=114551&rft.pages=114551-&rft.artnum=114551&rft.issn=1572-6657&rft.eissn=1873-2569&rft_id=info:doi/10.1016/j.jelechem.2020.114551&rft_dat=%3Cproquest_cross%3E2491198647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491198647&rft_id=info:pmid/&rft_els_id=S1572665720307797&rfr_iscdi=true |