One-step production of carbon nanocages for supercapacitors and sodium-ion batteries

Utilizing biomass to produce high-performance energy-storage materials has been the focus of increasing attention, thanks to the low cost, renewability, environmental friendliness, and inherent nature of certain biomass. However, the applications of biomass-derived carbons are commonly confined by t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electroanalytical chemistry (Lausanne, Switzerland) Switzerland), 2020-12, Vol.878, p.114551, Article 114551
Hauptverfasser: Zhao, Gongyuan, Yu, Dengfeng, Chen, Chong, Sun, Lei, Yang, Chenhui, Zhang, Hong, Du, Baosheng, Sun, Feifei, Sun, Ye, Yu, Miao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 114551
container_title Journal of electroanalytical chemistry (Lausanne, Switzerland)
container_volume 878
creator Zhao, Gongyuan
Yu, Dengfeng
Chen, Chong
Sun, Lei
Yang, Chenhui
Zhang, Hong
Du, Baosheng
Sun, Feifei
Sun, Ye
Yu, Miao
description Utilizing biomass to produce high-performance energy-storage materials has been the focus of increasing attention, thanks to the low cost, renewability, environmental friendliness, and inherent nature of certain biomass. However, the applications of biomass-derived carbons are commonly confined by their low electrical conductivity and ion diffusion kinetics. In this work, we report one-step strategy of synchronous activation and graphitization, using a new activating agent, i.e. KMnO4, to produce three-dimensional (3D) hierarchical porous framework of carbon nanocages (FCNC) from biomass for both supercapacitors and sodium-ion batteries (SIBs) applications. As a result, high specific capacitances (490.7 F·g−1 at a charge density of 1.0 A·g−1 in a three-electrode system using 6 mol·L−1 KOH aqueous as electrolyte) and high energy density (92.0 Wh kg−1 at power density of 1800 W·kg−1 using EMIMBF4 electrolyte) have been demonstrated when applying FCNC in supercapacitors, and high reversible capacity of 318.2 mAh·g−1 at 50 mA·g−1 has been achieved in SIBs. Although the rate performance is one of the primary concerns of SIBs, a high retention rate of 92% is realized in the present case after 1000 cycles at 10 A·g−1. Excitingly, even at 10 A·g−1, the reversible capacity delivered by FCNC maintains to be as high as 81.6 mAh·g−1. •3D hierarchical porous framework of carbon nanocages are derived from biomass.•Simultaneous templating, activation, and catalysis induce favorable hollow structure, interlayer spacing and graphitization.•The product demonstrates high performance for both supercapacitors and sodium-ion batteries.•490.7 F·g−1 at 1.0 A·g−1 and 92.0 Wh·kg−1 at 1800 W·kg−1 applied in supercapacitors.•318.2 mAh·g−1 at 50 mA·g−1 and retention rate of 92% after 1000 cycles at 10 A·g−1 in batteries.
doi_str_mv 10.1016/j.jelechem.2020.114551
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491198647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1572665720307797</els_id><sourcerecordid>2491198647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-b0b283cfe83f5b72be9107616a7b12227b7ed9f7ae40af4d018d1c0f1921b6e03</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BSm47pibtkm7U8QXDMxmXIckvdGUmaYmqeC_N8Po2tU9XM65j4-Qa6AroMBvh9WAOzQfuF8xynIT6qaBE7KAVlQla3h3mnUjWMl5I87JRYwDpaxtgS3IdjNiGRNOxRR8P5vk_Fh4WxgVdFajGr1R7xgL60MR5wmDUZMyLvkQCzX2RfS9m_flIaZVShgcxktyZtUu4tVvXZK3p8ftw0u53jy_PtyvS1PVNJWaatZWxmJb2UYLprEDKjhwJTQwxoQW2HdWKKypsnVPoe3BUAsdA82RVktyc5ybb_-cMSY5-DmMeaVkdQfQtbwW2cWPLhN8jAGtnILbq_AtgcoDQTnIP4LyQFAeCebg3TGI-Ycvh0FG43A02LuAJsneu_9G_ABUFX3K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491198647</pqid></control><display><type>article</type><title>One-step production of carbon nanocages for supercapacitors and sodium-ion batteries</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhao, Gongyuan ; Yu, Dengfeng ; Chen, Chong ; Sun, Lei ; Yang, Chenhui ; Zhang, Hong ; Du, Baosheng ; Sun, Feifei ; Sun, Ye ; Yu, Miao</creator><creatorcontrib>Zhao, Gongyuan ; Yu, Dengfeng ; Chen, Chong ; Sun, Lei ; Yang, Chenhui ; Zhang, Hong ; Du, Baosheng ; Sun, Feifei ; Sun, Ye ; Yu, Miao</creatorcontrib><description>Utilizing biomass to produce high-performance energy-storage materials has been the focus of increasing attention, thanks to the low cost, renewability, environmental friendliness, and inherent nature of certain biomass. However, the applications of biomass-derived carbons are commonly confined by their low electrical conductivity and ion diffusion kinetics. In this work, we report one-step strategy of synchronous activation and graphitization, using a new activating agent, i.e. KMnO4, to produce three-dimensional (3D) hierarchical porous framework of carbon nanocages (FCNC) from biomass for both supercapacitors and sodium-ion batteries (SIBs) applications. As a result, high specific capacitances (490.7 F·g−1 at a charge density of 1.0 A·g−1 in a three-electrode system using 6 mol·L−1 KOH aqueous as electrolyte) and high energy density (92.0 Wh kg−1 at power density of 1800 W·kg−1 using EMIMBF4 electrolyte) have been demonstrated when applying FCNC in supercapacitors, and high reversible capacity of 318.2 mAh·g−1 at 50 mA·g−1 has been achieved in SIBs. Although the rate performance is one of the primary concerns of SIBs, a high retention rate of 92% is realized in the present case after 1000 cycles at 10 A·g−1. Excitingly, even at 10 A·g−1, the reversible capacity delivered by FCNC maintains to be as high as 81.6 mAh·g−1. •3D hierarchical porous framework of carbon nanocages are derived from biomass.•Simultaneous templating, activation, and catalysis induce favorable hollow structure, interlayer spacing and graphitization.•The product demonstrates high performance for both supercapacitors and sodium-ion batteries.•490.7 F·g−1 at 1.0 A·g−1 and 92.0 Wh·kg−1 at 1800 W·kg−1 applied in supercapacitors.•318.2 mAh·g−1 at 50 mA·g−1 and retention rate of 92% after 1000 cycles at 10 A·g−1 in batteries.</description><identifier>ISSN: 1572-6657</identifier><identifier>EISSN: 1873-2569</identifier><identifier>DOI: 10.1016/j.jelechem.2020.114551</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Biomass ; Biomass energy production ; Carbon ; Carbon nanocage ; Charge density ; Electrical resistivity ; Electrolytes ; Energy storage ; Flux density ; Graphitization ; Hierarchical porous framework ; Ion diffusion ; Potassium permanganate ; Rechargeable batteries ; Sodium-ion batteries ; Sodium-ion battery ; Storage batteries ; Supercapacitor ; Supercapacitors</subject><ispartof>Journal of electroanalytical chemistry (Lausanne, Switzerland), 2020-12, Vol.878, p.114551, Article 114551</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Dec 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-b0b283cfe83f5b72be9107616a7b12227b7ed9f7ae40af4d018d1c0f1921b6e03</citedby><cites>FETCH-LOGICAL-c340t-b0b283cfe83f5b72be9107616a7b12227b7ed9f7ae40af4d018d1c0f1921b6e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jelechem.2020.114551$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Zhao, Gongyuan</creatorcontrib><creatorcontrib>Yu, Dengfeng</creatorcontrib><creatorcontrib>Chen, Chong</creatorcontrib><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Yang, Chenhui</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Du, Baosheng</creatorcontrib><creatorcontrib>Sun, Feifei</creatorcontrib><creatorcontrib>Sun, Ye</creatorcontrib><creatorcontrib>Yu, Miao</creatorcontrib><title>One-step production of carbon nanocages for supercapacitors and sodium-ion batteries</title><title>Journal of electroanalytical chemistry (Lausanne, Switzerland)</title><description>Utilizing biomass to produce high-performance energy-storage materials has been the focus of increasing attention, thanks to the low cost, renewability, environmental friendliness, and inherent nature of certain biomass. However, the applications of biomass-derived carbons are commonly confined by their low electrical conductivity and ion diffusion kinetics. In this work, we report one-step strategy of synchronous activation and graphitization, using a new activating agent, i.e. KMnO4, to produce three-dimensional (3D) hierarchical porous framework of carbon nanocages (FCNC) from biomass for both supercapacitors and sodium-ion batteries (SIBs) applications. As a result, high specific capacitances (490.7 F·g−1 at a charge density of 1.0 A·g−1 in a three-electrode system using 6 mol·L−1 KOH aqueous as electrolyte) and high energy density (92.0 Wh kg−1 at power density of 1800 W·kg−1 using EMIMBF4 electrolyte) have been demonstrated when applying FCNC in supercapacitors, and high reversible capacity of 318.2 mAh·g−1 at 50 mA·g−1 has been achieved in SIBs. Although the rate performance is one of the primary concerns of SIBs, a high retention rate of 92% is realized in the present case after 1000 cycles at 10 A·g−1. Excitingly, even at 10 A·g−1, the reversible capacity delivered by FCNC maintains to be as high as 81.6 mAh·g−1. •3D hierarchical porous framework of carbon nanocages are derived from biomass.•Simultaneous templating, activation, and catalysis induce favorable hollow structure, interlayer spacing and graphitization.•The product demonstrates high performance for both supercapacitors and sodium-ion batteries.•490.7 F·g−1 at 1.0 A·g−1 and 92.0 Wh·kg−1 at 1800 W·kg−1 applied in supercapacitors.•318.2 mAh·g−1 at 50 mA·g−1 and retention rate of 92% after 1000 cycles at 10 A·g−1 in batteries.</description><subject>Biomass</subject><subject>Biomass energy production</subject><subject>Carbon</subject><subject>Carbon nanocage</subject><subject>Charge density</subject><subject>Electrical resistivity</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Graphitization</subject><subject>Hierarchical porous framework</subject><subject>Ion diffusion</subject><subject>Potassium permanganate</subject><subject>Rechargeable batteries</subject><subject>Sodium-ion batteries</subject><subject>Sodium-ion battery</subject><subject>Storage batteries</subject><subject>Supercapacitor</subject><subject>Supercapacitors</subject><issn>1572-6657</issn><issn>1873-2569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BSm47pibtkm7U8QXDMxmXIckvdGUmaYmqeC_N8Po2tU9XM65j4-Qa6AroMBvh9WAOzQfuF8xynIT6qaBE7KAVlQla3h3mnUjWMl5I87JRYwDpaxtgS3IdjNiGRNOxRR8P5vk_Fh4WxgVdFajGr1R7xgL60MR5wmDUZMyLvkQCzX2RfS9m_flIaZVShgcxktyZtUu4tVvXZK3p8ftw0u53jy_PtyvS1PVNJWaatZWxmJb2UYLprEDKjhwJTQwxoQW2HdWKKypsnVPoe3BUAsdA82RVktyc5ybb_-cMSY5-DmMeaVkdQfQtbwW2cWPLhN8jAGtnILbq_AtgcoDQTnIP4LyQFAeCebg3TGI-Ycvh0FG43A02LuAJsneu_9G_ABUFX3K</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Zhao, Gongyuan</creator><creator>Yu, Dengfeng</creator><creator>Chen, Chong</creator><creator>Sun, Lei</creator><creator>Yang, Chenhui</creator><creator>Zhang, Hong</creator><creator>Du, Baosheng</creator><creator>Sun, Feifei</creator><creator>Sun, Ye</creator><creator>Yu, Miao</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20201201</creationdate><title>One-step production of carbon nanocages for supercapacitors and sodium-ion batteries</title><author>Zhao, Gongyuan ; Yu, Dengfeng ; Chen, Chong ; Sun, Lei ; Yang, Chenhui ; Zhang, Hong ; Du, Baosheng ; Sun, Feifei ; Sun, Ye ; Yu, Miao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-b0b283cfe83f5b72be9107616a7b12227b7ed9f7ae40af4d018d1c0f1921b6e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomass</topic><topic>Biomass energy production</topic><topic>Carbon</topic><topic>Carbon nanocage</topic><topic>Charge density</topic><topic>Electrical resistivity</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Graphitization</topic><topic>Hierarchical porous framework</topic><topic>Ion diffusion</topic><topic>Potassium permanganate</topic><topic>Rechargeable batteries</topic><topic>Sodium-ion batteries</topic><topic>Sodium-ion battery</topic><topic>Storage batteries</topic><topic>Supercapacitor</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Gongyuan</creatorcontrib><creatorcontrib>Yu, Dengfeng</creatorcontrib><creatorcontrib>Chen, Chong</creatorcontrib><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Yang, Chenhui</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Du, Baosheng</creatorcontrib><creatorcontrib>Sun, Feifei</creatorcontrib><creatorcontrib>Sun, Ye</creatorcontrib><creatorcontrib>Yu, Miao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of electroanalytical chemistry (Lausanne, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Gongyuan</au><au>Yu, Dengfeng</au><au>Chen, Chong</au><au>Sun, Lei</au><au>Yang, Chenhui</au><au>Zhang, Hong</au><au>Du, Baosheng</au><au>Sun, Feifei</au><au>Sun, Ye</au><au>Yu, Miao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-step production of carbon nanocages for supercapacitors and sodium-ion batteries</atitle><jtitle>Journal of electroanalytical chemistry (Lausanne, Switzerland)</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>878</volume><spage>114551</spage><pages>114551-</pages><artnum>114551</artnum><issn>1572-6657</issn><eissn>1873-2569</eissn><abstract>Utilizing biomass to produce high-performance energy-storage materials has been the focus of increasing attention, thanks to the low cost, renewability, environmental friendliness, and inherent nature of certain biomass. However, the applications of biomass-derived carbons are commonly confined by their low electrical conductivity and ion diffusion kinetics. In this work, we report one-step strategy of synchronous activation and graphitization, using a new activating agent, i.e. KMnO4, to produce three-dimensional (3D) hierarchical porous framework of carbon nanocages (FCNC) from biomass for both supercapacitors and sodium-ion batteries (SIBs) applications. As a result, high specific capacitances (490.7 F·g−1 at a charge density of 1.0 A·g−1 in a three-electrode system using 6 mol·L−1 KOH aqueous as electrolyte) and high energy density (92.0 Wh kg−1 at power density of 1800 W·kg−1 using EMIMBF4 electrolyte) have been demonstrated when applying FCNC in supercapacitors, and high reversible capacity of 318.2 mAh·g−1 at 50 mA·g−1 has been achieved in SIBs. Although the rate performance is one of the primary concerns of SIBs, a high retention rate of 92% is realized in the present case after 1000 cycles at 10 A·g−1. Excitingly, even at 10 A·g−1, the reversible capacity delivered by FCNC maintains to be as high as 81.6 mAh·g−1. •3D hierarchical porous framework of carbon nanocages are derived from biomass.•Simultaneous templating, activation, and catalysis induce favorable hollow structure, interlayer spacing and graphitization.•The product demonstrates high performance for both supercapacitors and sodium-ion batteries.•490.7 F·g−1 at 1.0 A·g−1 and 92.0 Wh·kg−1 at 1800 W·kg−1 applied in supercapacitors.•318.2 mAh·g−1 at 50 mA·g−1 and retention rate of 92% after 1000 cycles at 10 A·g−1 in batteries.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jelechem.2020.114551</doi></addata></record>
fulltext fulltext
identifier ISSN: 1572-6657
ispartof Journal of electroanalytical chemistry (Lausanne, Switzerland), 2020-12, Vol.878, p.114551, Article 114551
issn 1572-6657
1873-2569
language eng
recordid cdi_proquest_journals_2491198647
source ScienceDirect Journals (5 years ago - present)
subjects Biomass
Biomass energy production
Carbon
Carbon nanocage
Charge density
Electrical resistivity
Electrolytes
Energy storage
Flux density
Graphitization
Hierarchical porous framework
Ion diffusion
Potassium permanganate
Rechargeable batteries
Sodium-ion batteries
Sodium-ion battery
Storage batteries
Supercapacitor
Supercapacitors
title One-step production of carbon nanocages for supercapacitors and sodium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-step%20production%20of%20carbon%20nanocages%20for%20supercapacitors%20and%20sodium-ion%20batteries&rft.jtitle=Journal%20of%20electroanalytical%20chemistry%20(Lausanne,%20Switzerland)&rft.au=Zhao,%20Gongyuan&rft.date=2020-12-01&rft.volume=878&rft.spage=114551&rft.pages=114551-&rft.artnum=114551&rft.issn=1572-6657&rft.eissn=1873-2569&rft_id=info:doi/10.1016/j.jelechem.2020.114551&rft_dat=%3Cproquest_cross%3E2491198647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491198647&rft_id=info:pmid/&rft_els_id=S1572665720307797&rfr_iscdi=true