Microstructural evolution, mechanical and physical properties of graphene reinforced aluminum composites fabricated via powder metallurgy

Tremendous interest in graphene as reinforcement of metal matrix is drawn due to its excellent mechanical properties coupled with outstanding thermal and electrical properties. 0.5 wt% graphene nanoplatelets (GNPs) reinforced pure Al composites were fabricated by powder metallurgy. Effects of micros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-01, Vol.802, p.140669, Article 140669
Hauptverfasser: Yu, H., Zhang, S.Q., Xia, J.H., Su, Q., Ma, B.C., Wu, J.H., Zhou, J.X., Wang, X.T., Hu, L.X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 140669
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 802
creator Yu, H.
Zhang, S.Q.
Xia, J.H.
Su, Q.
Ma, B.C.
Wu, J.H.
Zhou, J.X.
Wang, X.T.
Hu, L.X.
description Tremendous interest in graphene as reinforcement of metal matrix is drawn due to its excellent mechanical properties coupled with outstanding thermal and electrical properties. 0.5 wt% graphene nanoplatelets (GNPs) reinforced pure Al composites were fabricated by powder metallurgy. Effects of microstructure on both mechanical and physical properties are analyzed systematically. GNPs were thoroughly flattened after mechanical stirring. The Raman spectroscopy results of GNPs confirmed the defect repairing during composite powders preparation. After hot extrusion, the scanning electron microscope results presented that GNPs distributed uniformly in Al matrix. Aluminum carbide was found on GNPs/Al interface via high-resolution transmission electron microscopy and partial reaction between Al and GNPs was also certified. The hardness, tensile yield strength and fracture strain of composite are 73 HV, 248 MPa and 16%, respectively. And the tensile yield strength is 65% higher than pure Al. The contribution ratios of grain boundary strengthening, load transfer effect and thermal mismatch mechanism are calculated as 42%, 56% and 2%, respectively. Thermal conductivity and electrical conductivity of composite were detected to be 201 W m−1 K−1 and 56 %IACS. The reduction percentages are 2.4% and 6.7% compared with pure Al under the same procedure. Therefore, the insignificant loss of physical properties brought about exciting improvement on strength in return.
doi_str_mv 10.1016/j.msea.2020.140669
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2491198171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509320317329</els_id><sourcerecordid>2491198171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-953b0b0ccd9a0f3912f28b1db5c06678cec095f0c469c6efba43cd170e6e44e63</originalsourceid><addsrcrecordid>eNp9kMtu2zAQRYkiAeo4_YGuCHQbOaReFoFuAiNpAqTopl0T1GhoU5BEdUg58Cf0r0vXWXc1mJl753EY-yzFRgpZ3_ebMaDZ5CJPhVLUtfrAVrLZFlmpivqKrYTKZVYJVXxkNyH0Qogkq1bsz3cH5EOkBeJCZuB49MMSnZ_u-IhwMJODVDVTx-fDKfxLZvIzUnQYuLd8T2Y-4ISc0E3WE2DHzbCMblpGDn6cfXAxSa1pKdljah-d4bN_65DSjmiGYaH96ZZdWzME_PQe1-zX0-PP3XP2-uPby-7hNYMib2KmqqIVrQDolBG2UDK3edPKrq0gvb1tAEGoygooawU12taUBXRyK7DGssS6WLMvl7npjd8Lhqh7v9CUVuq8VFKqRm5lUuUX1ZlOILR6JjcaOmkp9Bm57vUZuT4j1xfkyfT1YsJ0_9Eh6QAOp0TEEULUnXf_s_8FQ4aOrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491198171</pqid></control><display><type>article</type><title>Microstructural evolution, mechanical and physical properties of graphene reinforced aluminum composites fabricated via powder metallurgy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yu, H. ; Zhang, S.Q. ; Xia, J.H. ; Su, Q. ; Ma, B.C. ; Wu, J.H. ; Zhou, J.X. ; Wang, X.T. ; Hu, L.X.</creator><creatorcontrib>Yu, H. ; Zhang, S.Q. ; Xia, J.H. ; Su, Q. ; Ma, B.C. ; Wu, J.H. ; Zhou, J.X. ; Wang, X.T. ; Hu, L.X.</creatorcontrib><description>Tremendous interest in graphene as reinforcement of metal matrix is drawn due to its excellent mechanical properties coupled with outstanding thermal and electrical properties. 0.5 wt% graphene nanoplatelets (GNPs) reinforced pure Al composites were fabricated by powder metallurgy. Effects of microstructure on both mechanical and physical properties are analyzed systematically. GNPs were thoroughly flattened after mechanical stirring. The Raman spectroscopy results of GNPs confirmed the defect repairing during composite powders preparation. After hot extrusion, the scanning electron microscope results presented that GNPs distributed uniformly in Al matrix. Aluminum carbide was found on GNPs/Al interface via high-resolution transmission electron microscopy and partial reaction between Al and GNPs was also certified. The hardness, tensile yield strength and fracture strain of composite are 73 HV, 248 MPa and 16%, respectively. And the tensile yield strength is 65% higher than pure Al. The contribution ratios of grain boundary strengthening, load transfer effect and thermal mismatch mechanism are calculated as 42%, 56% and 2%, respectively. Thermal conductivity and electrical conductivity of composite were detected to be 201 W m−1 K−1 and 56 %IACS. The reduction percentages are 2.4% and 6.7% compared with pure Al under the same procedure. Therefore, the insignificant loss of physical properties brought about exciting improvement on strength in return.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2020.140669</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Aluminum carbide ; Aluminum composites ; Composite materials ; Electrical properties ; Electrical resistivity ; Electron microscopes ; Grain boundaries ; Graphene ; Graphene nanoplatelets (GNPs) ; High resolution electron microscopy ; Hot extrusion ; Interface ; Load transfer ; Mechanical properties ; Metal-matrix composites ; Microstructure ; Physical properties ; Powder metallurgy ; Raman spectroscopy ; Strengthening mechanisms ; Thermal conductivity ; Thermal mismatch ; Yield strength ; Yield stress</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2021-01, Vol.802, p.140669, Article 140669</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 20, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-953b0b0ccd9a0f3912f28b1db5c06678cec095f0c469c6efba43cd170e6e44e63</citedby><cites>FETCH-LOGICAL-c328t-953b0b0ccd9a0f3912f28b1db5c06678cec095f0c469c6efba43cd170e6e44e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2020.140669$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yu, H.</creatorcontrib><creatorcontrib>Zhang, S.Q.</creatorcontrib><creatorcontrib>Xia, J.H.</creatorcontrib><creatorcontrib>Su, Q.</creatorcontrib><creatorcontrib>Ma, B.C.</creatorcontrib><creatorcontrib>Wu, J.H.</creatorcontrib><creatorcontrib>Zhou, J.X.</creatorcontrib><creatorcontrib>Wang, X.T.</creatorcontrib><creatorcontrib>Hu, L.X.</creatorcontrib><title>Microstructural evolution, mechanical and physical properties of graphene reinforced aluminum composites fabricated via powder metallurgy</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Tremendous interest in graphene as reinforcement of metal matrix is drawn due to its excellent mechanical properties coupled with outstanding thermal and electrical properties. 0.5 wt% graphene nanoplatelets (GNPs) reinforced pure Al composites were fabricated by powder metallurgy. Effects of microstructure on both mechanical and physical properties are analyzed systematically. GNPs were thoroughly flattened after mechanical stirring. The Raman spectroscopy results of GNPs confirmed the defect repairing during composite powders preparation. After hot extrusion, the scanning electron microscope results presented that GNPs distributed uniformly in Al matrix. Aluminum carbide was found on GNPs/Al interface via high-resolution transmission electron microscopy and partial reaction between Al and GNPs was also certified. The hardness, tensile yield strength and fracture strain of composite are 73 HV, 248 MPa and 16%, respectively. And the tensile yield strength is 65% higher than pure Al. The contribution ratios of grain boundary strengthening, load transfer effect and thermal mismatch mechanism are calculated as 42%, 56% and 2%, respectively. Thermal conductivity and electrical conductivity of composite were detected to be 201 W m−1 K−1 and 56 %IACS. The reduction percentages are 2.4% and 6.7% compared with pure Al under the same procedure. Therefore, the insignificant loss of physical properties brought about exciting improvement on strength in return.</description><subject>Aluminum carbide</subject><subject>Aluminum composites</subject><subject>Composite materials</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Electron microscopes</subject><subject>Grain boundaries</subject><subject>Graphene</subject><subject>Graphene nanoplatelets (GNPs)</subject><subject>High resolution electron microscopy</subject><subject>Hot extrusion</subject><subject>Interface</subject><subject>Load transfer</subject><subject>Mechanical properties</subject><subject>Metal-matrix composites</subject><subject>Microstructure</subject><subject>Physical properties</subject><subject>Powder metallurgy</subject><subject>Raman spectroscopy</subject><subject>Strengthening mechanisms</subject><subject>Thermal conductivity</subject><subject>Thermal mismatch</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtu2zAQRYkiAeo4_YGuCHQbOaReFoFuAiNpAqTopl0T1GhoU5BEdUg58Cf0r0vXWXc1mJl753EY-yzFRgpZ3_ebMaDZ5CJPhVLUtfrAVrLZFlmpivqKrYTKZVYJVXxkNyH0Qogkq1bsz3cH5EOkBeJCZuB49MMSnZ_u-IhwMJODVDVTx-fDKfxLZvIzUnQYuLd8T2Y-4ISc0E3WE2DHzbCMblpGDn6cfXAxSa1pKdljah-d4bN_65DSjmiGYaH96ZZdWzME_PQe1-zX0-PP3XP2-uPby-7hNYMib2KmqqIVrQDolBG2UDK3edPKrq0gvb1tAEGoygooawU12taUBXRyK7DGssS6WLMvl7npjd8Lhqh7v9CUVuq8VFKqRm5lUuUX1ZlOILR6JjcaOmkp9Bm57vUZuT4j1xfkyfT1YsJ0_9Eh6QAOp0TEEULUnXf_s_8FQ4aOrg</recordid><startdate>20210120</startdate><enddate>20210120</enddate><creator>Yu, H.</creator><creator>Zhang, S.Q.</creator><creator>Xia, J.H.</creator><creator>Su, Q.</creator><creator>Ma, B.C.</creator><creator>Wu, J.H.</creator><creator>Zhou, J.X.</creator><creator>Wang, X.T.</creator><creator>Hu, L.X.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210120</creationdate><title>Microstructural evolution, mechanical and physical properties of graphene reinforced aluminum composites fabricated via powder metallurgy</title><author>Yu, H. ; Zhang, S.Q. ; Xia, J.H. ; Su, Q. ; Ma, B.C. ; Wu, J.H. ; Zhou, J.X. ; Wang, X.T. ; Hu, L.X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-953b0b0ccd9a0f3912f28b1db5c06678cec095f0c469c6efba43cd170e6e44e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum carbide</topic><topic>Aluminum composites</topic><topic>Composite materials</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Electron microscopes</topic><topic>Grain boundaries</topic><topic>Graphene</topic><topic>Graphene nanoplatelets (GNPs)</topic><topic>High resolution electron microscopy</topic><topic>Hot extrusion</topic><topic>Interface</topic><topic>Load transfer</topic><topic>Mechanical properties</topic><topic>Metal-matrix composites</topic><topic>Microstructure</topic><topic>Physical properties</topic><topic>Powder metallurgy</topic><topic>Raman spectroscopy</topic><topic>Strengthening mechanisms</topic><topic>Thermal conductivity</topic><topic>Thermal mismatch</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, H.</creatorcontrib><creatorcontrib>Zhang, S.Q.</creatorcontrib><creatorcontrib>Xia, J.H.</creatorcontrib><creatorcontrib>Su, Q.</creatorcontrib><creatorcontrib>Ma, B.C.</creatorcontrib><creatorcontrib>Wu, J.H.</creatorcontrib><creatorcontrib>Zhou, J.X.</creatorcontrib><creatorcontrib>Wang, X.T.</creatorcontrib><creatorcontrib>Hu, L.X.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, H.</au><au>Zhang, S.Q.</au><au>Xia, J.H.</au><au>Su, Q.</au><au>Ma, B.C.</au><au>Wu, J.H.</au><au>Zhou, J.X.</au><au>Wang, X.T.</au><au>Hu, L.X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural evolution, mechanical and physical properties of graphene reinforced aluminum composites fabricated via powder metallurgy</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2021-01-20</date><risdate>2021</risdate><volume>802</volume><spage>140669</spage><pages>140669-</pages><artnum>140669</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Tremendous interest in graphene as reinforcement of metal matrix is drawn due to its excellent mechanical properties coupled with outstanding thermal and electrical properties. 0.5 wt% graphene nanoplatelets (GNPs) reinforced pure Al composites were fabricated by powder metallurgy. Effects of microstructure on both mechanical and physical properties are analyzed systematically. GNPs were thoroughly flattened after mechanical stirring. The Raman spectroscopy results of GNPs confirmed the defect repairing during composite powders preparation. After hot extrusion, the scanning electron microscope results presented that GNPs distributed uniformly in Al matrix. Aluminum carbide was found on GNPs/Al interface via high-resolution transmission electron microscopy and partial reaction between Al and GNPs was also certified. The hardness, tensile yield strength and fracture strain of composite are 73 HV, 248 MPa and 16%, respectively. And the tensile yield strength is 65% higher than pure Al. The contribution ratios of grain boundary strengthening, load transfer effect and thermal mismatch mechanism are calculated as 42%, 56% and 2%, respectively. Thermal conductivity and electrical conductivity of composite were detected to be 201 W m−1 K−1 and 56 %IACS. The reduction percentages are 2.4% and 6.7% compared with pure Al under the same procedure. Therefore, the insignificant loss of physical properties brought about exciting improvement on strength in return.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2020.140669</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-01, Vol.802, p.140669, Article 140669
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2491198171
source Access via ScienceDirect (Elsevier)
subjects Aluminum carbide
Aluminum composites
Composite materials
Electrical properties
Electrical resistivity
Electron microscopes
Grain boundaries
Graphene
Graphene nanoplatelets (GNPs)
High resolution electron microscopy
Hot extrusion
Interface
Load transfer
Mechanical properties
Metal-matrix composites
Microstructure
Physical properties
Powder metallurgy
Raman spectroscopy
Strengthening mechanisms
Thermal conductivity
Thermal mismatch
Yield strength
Yield stress
title Microstructural evolution, mechanical and physical properties of graphene reinforced aluminum composites fabricated via powder metallurgy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20evolution,%20mechanical%20and%20physical%20properties%20of%20graphene%20reinforced%20aluminum%20composites%20fabricated%20via%20powder%20metallurgy&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Yu,%20H.&rft.date=2021-01-20&rft.volume=802&rft.spage=140669&rft.pages=140669-&rft.artnum=140669&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2020.140669&rft_dat=%3Cproquest_cross%3E2491198171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491198171&rft_id=info:pmid/&rft_els_id=S0921509320317329&rfr_iscdi=true