Effects of tool edge radius on chip formation during the micromachining of pure iron
The smoothed particle hydrodynamics simulation model of micromachining of industrial pure iron was established to study the effect of tool edge radius on chip formation in this paper. The process of chip production was studied by particle displacement method, and cutting force and stress were analyz...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2020-06, Vol.108 (7-8), p.2121-2130 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2130 |
---|---|
container_issue | 7-8 |
container_start_page | 2121 |
container_title | International journal of advanced manufacturing technology |
container_volume | 108 |
creator | Guo, Xiaoguang Li, Yang Cai, Linquan Guo, Jiang Kang, Renke Jin, Zhuji Guo, Dongming |
description | The smoothed particle hydrodynamics simulation model of micromachining of industrial pure iron was established to study the effect of tool edge radius on chip formation in this paper. The process of chip production was studied by particle displacement method, and cutting force and stress were analyzed. Meanwhile, the mechanism of chip formation was revealed. The simulation results show that the tool edge radius has significant effects on chip formation in micromachining. When the depth of cut is 0.16 times of the tool edge radius, the chips begin to produce. And the minimum cutting thickness decreases with the increase of the ratio of the cutting depth to the tool edge radius, which means that chips are more easily to be produced with the decrease of the tool edge radius. Meanwhile, the larger the tool edge radius is, the wider the stress distribution area is and the greater the fluctuation of the cutting force is. Finally, values of the minimum cutting thickness under different ratios obtained by the theoretical formula are basically consistent with the simulation results, verifying the correctness of the simulation results. This paper provided valuable insights into reasonable selection of tool parameters for improving machining precision. |
doi_str_mv | 10.1007/s00170-020-05528-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490902775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415176286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-2ad740f163d83d9c9208a4fd3bdd0b61ba455e88fc2b0ba4a4bc6137904e9eef3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMQfOH7GdEVXlQ6rEUmbLie02VRMHOxn673EJEhvD6XSn5z3LD0L3BB4JgHxKAERCATRXWVJVnC7QgnDGCgakvEQLoEIVTAp1jW5SOmRcEKEWaLv23jVjwsHjMYQjdnbncDS2nfKux82-HbAPsTNjm0c7xbbf4XHvcNc2MXQmA_15lfPDFB1uY-hv0ZU3x-TufvsSfb6st6u3YvPx-r563hQN43IsqLGSgyeCWcVs1VQUlOHestpaqAWpDS9Lp5RvaA15MLxuBGGyAu4q5zxboof57hDD1-TSqA9hin1-UlNeQQVUyvJ_ipRECqpEpuhM5V-lFJ3XQ2w7E0-agD471rNjnR3rH8f6lENsDqXh7MXFv9P_pL4B7oZ_RQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415176286</pqid></control><display><type>article</type><title>Effects of tool edge radius on chip formation during the micromachining of pure iron</title><source>SpringerLink Journals</source><creator>Guo, Xiaoguang ; Li, Yang ; Cai, Linquan ; Guo, Jiang ; Kang, Renke ; Jin, Zhuji ; Guo, Dongming</creator><creatorcontrib>Guo, Xiaoguang ; Li, Yang ; Cai, Linquan ; Guo, Jiang ; Kang, Renke ; Jin, Zhuji ; Guo, Dongming</creatorcontrib><description>The smoothed particle hydrodynamics simulation model of micromachining of industrial pure iron was established to study the effect of tool edge radius on chip formation in this paper. The process of chip production was studied by particle displacement method, and cutting force and stress were analyzed. Meanwhile, the mechanism of chip formation was revealed. The simulation results show that the tool edge radius has significant effects on chip formation in micromachining. When the depth of cut is 0.16 times of the tool edge radius, the chips begin to produce. And the minimum cutting thickness decreases with the increase of the ratio of the cutting depth to the tool edge radius, which means that chips are more easily to be produced with the decrease of the tool edge radius. Meanwhile, the larger the tool edge radius is, the wider the stress distribution area is and the greater the fluctuation of the cutting force is. Finally, values of the minimum cutting thickness under different ratios obtained by the theoretical formula are basically consistent with the simulation results, verifying the correctness of the simulation results. This paper provided valuable insights into reasonable selection of tool parameters for improving machining precision.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-05528-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Chip formation ; Computational fluid dynamics ; Computer simulation ; Computer-Aided Engineering (CAD ; Cutting force ; Cutting parameters ; Engineering ; Fluid flow ; Industrial and Production Engineering ; Iron ; Machining ; Mechanical Engineering ; Media Management ; Micromachining ; Original Article ; Simulation ; Smooth particle hydrodynamics ; Stress concentration ; Stress distribution ; Thickness</subject><ispartof>International journal of advanced manufacturing technology, 2020-06, Vol.108 (7-8), p.2121-2130</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-2ad740f163d83d9c9208a4fd3bdd0b61ba455e88fc2b0ba4a4bc6137904e9eef3</citedby><cites>FETCH-LOGICAL-c347t-2ad740f163d83d9c9208a4fd3bdd0b61ba455e88fc2b0ba4a4bc6137904e9eef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-020-05528-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-020-05528-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Guo, Xiaoguang</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Cai, Linquan</creatorcontrib><creatorcontrib>Guo, Jiang</creatorcontrib><creatorcontrib>Kang, Renke</creatorcontrib><creatorcontrib>Jin, Zhuji</creatorcontrib><creatorcontrib>Guo, Dongming</creatorcontrib><title>Effects of tool edge radius on chip formation during the micromachining of pure iron</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The smoothed particle hydrodynamics simulation model of micromachining of industrial pure iron was established to study the effect of tool edge radius on chip formation in this paper. The process of chip production was studied by particle displacement method, and cutting force and stress were analyzed. Meanwhile, the mechanism of chip formation was revealed. The simulation results show that the tool edge radius has significant effects on chip formation in micromachining. When the depth of cut is 0.16 times of the tool edge radius, the chips begin to produce. And the minimum cutting thickness decreases with the increase of the ratio of the cutting depth to the tool edge radius, which means that chips are more easily to be produced with the decrease of the tool edge radius. Meanwhile, the larger the tool edge radius is, the wider the stress distribution area is and the greater the fluctuation of the cutting force is. Finally, values of the minimum cutting thickness under different ratios obtained by the theoretical formula are basically consistent with the simulation results, verifying the correctness of the simulation results. This paper provided valuable insights into reasonable selection of tool parameters for improving machining precision.</description><subject>CAE) and Design</subject><subject>Chip formation</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cutting force</subject><subject>Cutting parameters</subject><subject>Engineering</subject><subject>Fluid flow</subject><subject>Industrial and Production Engineering</subject><subject>Iron</subject><subject>Machining</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Micromachining</subject><subject>Original Article</subject><subject>Simulation</subject><subject>Smooth particle hydrodynamics</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Thickness</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMQfOH7GdEVXlQ6rEUmbLie02VRMHOxn673EJEhvD6XSn5z3LD0L3BB4JgHxKAERCATRXWVJVnC7QgnDGCgakvEQLoEIVTAp1jW5SOmRcEKEWaLv23jVjwsHjMYQjdnbncDS2nfKux82-HbAPsTNjm0c7xbbf4XHvcNc2MXQmA_15lfPDFB1uY-hv0ZU3x-TufvsSfb6st6u3YvPx-r563hQN43IsqLGSgyeCWcVs1VQUlOHestpaqAWpDS9Lp5RvaA15MLxuBGGyAu4q5zxboof57hDD1-TSqA9hin1-UlNeQQVUyvJ_ipRECqpEpuhM5V-lFJ3XQ2w7E0-agD471rNjnR3rH8f6lENsDqXh7MXFv9P_pL4B7oZ_RQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Guo, Xiaoguang</creator><creator>Li, Yang</creator><creator>Cai, Linquan</creator><creator>Guo, Jiang</creator><creator>Kang, Renke</creator><creator>Jin, Zhuji</creator><creator>Guo, Dongming</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200601</creationdate><title>Effects of tool edge radius on chip formation during the micromachining of pure iron</title><author>Guo, Xiaoguang ; Li, Yang ; Cai, Linquan ; Guo, Jiang ; Kang, Renke ; Jin, Zhuji ; Guo, Dongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-2ad740f163d83d9c9208a4fd3bdd0b61ba455e88fc2b0ba4a4bc6137904e9eef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CAE) and Design</topic><topic>Chip formation</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cutting force</topic><topic>Cutting parameters</topic><topic>Engineering</topic><topic>Fluid flow</topic><topic>Industrial and Production Engineering</topic><topic>Iron</topic><topic>Machining</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Micromachining</topic><topic>Original Article</topic><topic>Simulation</topic><topic>Smooth particle hydrodynamics</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xiaoguang</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Cai, Linquan</creatorcontrib><creatorcontrib>Guo, Jiang</creatorcontrib><creatorcontrib>Kang, Renke</creatorcontrib><creatorcontrib>Jin, Zhuji</creatorcontrib><creatorcontrib>Guo, Dongming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xiaoguang</au><au>Li, Yang</au><au>Cai, Linquan</au><au>Guo, Jiang</au><au>Kang, Renke</au><au>Jin, Zhuji</au><au>Guo, Dongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of tool edge radius on chip formation during the micromachining of pure iron</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>108</volume><issue>7-8</issue><spage>2121</spage><epage>2130</epage><pages>2121-2130</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The smoothed particle hydrodynamics simulation model of micromachining of industrial pure iron was established to study the effect of tool edge radius on chip formation in this paper. The process of chip production was studied by particle displacement method, and cutting force and stress were analyzed. Meanwhile, the mechanism of chip formation was revealed. The simulation results show that the tool edge radius has significant effects on chip formation in micromachining. When the depth of cut is 0.16 times of the tool edge radius, the chips begin to produce. And the minimum cutting thickness decreases with the increase of the ratio of the cutting depth to the tool edge radius, which means that chips are more easily to be produced with the decrease of the tool edge radius. Meanwhile, the larger the tool edge radius is, the wider the stress distribution area is and the greater the fluctuation of the cutting force is. Finally, values of the minimum cutting thickness under different ratios obtained by the theoretical formula are basically consistent with the simulation results, verifying the correctness of the simulation results. This paper provided valuable insights into reasonable selection of tool parameters for improving machining precision.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-05528-y</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2020-06, Vol.108 (7-8), p.2121-2130 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2490902775 |
source | SpringerLink Journals |
subjects | CAE) and Design Chip formation Computational fluid dynamics Computer simulation Computer-Aided Engineering (CAD Cutting force Cutting parameters Engineering Fluid flow Industrial and Production Engineering Iron Machining Mechanical Engineering Media Management Micromachining Original Article Simulation Smooth particle hydrodynamics Stress concentration Stress distribution Thickness |
title | Effects of tool edge radius on chip formation during the micromachining of pure iron |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A09%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20tool%20edge%20radius%20on%20chip%20formation%20during%20the%20micromachining%20of%20pure%20iron&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Guo,%20Xiaoguang&rft.date=2020-06-01&rft.volume=108&rft.issue=7-8&rft.spage=2121&rft.epage=2130&rft.pages=2121-2130&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-05528-y&rft_dat=%3Cproquest_cross%3E2415176286%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415176286&rft_id=info:pmid/&rfr_iscdi=true |