Effects of tool edge radius on chip formation during the micromachining of pure iron

The smoothed particle hydrodynamics simulation model of micromachining of industrial pure iron was established to study the effect of tool edge radius on chip formation in this paper. The process of chip production was studied by particle displacement method, and cutting force and stress were analyz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2020-06, Vol.108 (7-8), p.2121-2130
Hauptverfasser: Guo, Xiaoguang, Li, Yang, Cai, Linquan, Guo, Jiang, Kang, Renke, Jin, Zhuji, Guo, Dongming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2130
container_issue 7-8
container_start_page 2121
container_title International journal of advanced manufacturing technology
container_volume 108
creator Guo, Xiaoguang
Li, Yang
Cai, Linquan
Guo, Jiang
Kang, Renke
Jin, Zhuji
Guo, Dongming
description The smoothed particle hydrodynamics simulation model of micromachining of industrial pure iron was established to study the effect of tool edge radius on chip formation in this paper. The process of chip production was studied by particle displacement method, and cutting force and stress were analyzed. Meanwhile, the mechanism of chip formation was revealed. The simulation results show that the tool edge radius has significant effects on chip formation in micromachining. When the depth of cut is 0.16 times of the tool edge radius, the chips begin to produce. And the minimum cutting thickness decreases with the increase of the ratio of the cutting depth to the tool edge radius, which means that chips are more easily to be produced with the decrease of the tool edge radius. Meanwhile, the larger the tool edge radius is, the wider the stress distribution area is and the greater the fluctuation of the cutting force is. Finally, values of the minimum cutting thickness under different ratios obtained by the theoretical formula are basically consistent with the simulation results, verifying the correctness of the simulation results. This paper provided valuable insights into reasonable selection of tool parameters for improving machining precision.
doi_str_mv 10.1007/s00170-020-05528-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490902775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415176286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-2ad740f163d83d9c9208a4fd3bdd0b61ba455e88fc2b0ba4a4bc6137904e9eef3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMQfOH7GdEVXlQ6rEUmbLie02VRMHOxn673EJEhvD6XSn5z3LD0L3BB4JgHxKAERCATRXWVJVnC7QgnDGCgakvEQLoEIVTAp1jW5SOmRcEKEWaLv23jVjwsHjMYQjdnbncDS2nfKux82-HbAPsTNjm0c7xbbf4XHvcNc2MXQmA_15lfPDFB1uY-hv0ZU3x-TufvsSfb6st6u3YvPx-r563hQN43IsqLGSgyeCWcVs1VQUlOHestpaqAWpDS9Lp5RvaA15MLxuBGGyAu4q5zxboof57hDD1-TSqA9hin1-UlNeQQVUyvJ_ipRECqpEpuhM5V-lFJ3XQ2w7E0-agD471rNjnR3rH8f6lENsDqXh7MXFv9P_pL4B7oZ_RQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415176286</pqid></control><display><type>article</type><title>Effects of tool edge radius on chip formation during the micromachining of pure iron</title><source>SpringerLink Journals</source><creator>Guo, Xiaoguang ; Li, Yang ; Cai, Linquan ; Guo, Jiang ; Kang, Renke ; Jin, Zhuji ; Guo, Dongming</creator><creatorcontrib>Guo, Xiaoguang ; Li, Yang ; Cai, Linquan ; Guo, Jiang ; Kang, Renke ; Jin, Zhuji ; Guo, Dongming</creatorcontrib><description>The smoothed particle hydrodynamics simulation model of micromachining of industrial pure iron was established to study the effect of tool edge radius on chip formation in this paper. The process of chip production was studied by particle displacement method, and cutting force and stress were analyzed. Meanwhile, the mechanism of chip formation was revealed. The simulation results show that the tool edge radius has significant effects on chip formation in micromachining. When the depth of cut is 0.16 times of the tool edge radius, the chips begin to produce. And the minimum cutting thickness decreases with the increase of the ratio of the cutting depth to the tool edge radius, which means that chips are more easily to be produced with the decrease of the tool edge radius. Meanwhile, the larger the tool edge radius is, the wider the stress distribution area is and the greater the fluctuation of the cutting force is. Finally, values of the minimum cutting thickness under different ratios obtained by the theoretical formula are basically consistent with the simulation results, verifying the correctness of the simulation results. This paper provided valuable insights into reasonable selection of tool parameters for improving machining precision.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-05528-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Chip formation ; Computational fluid dynamics ; Computer simulation ; Computer-Aided Engineering (CAD ; Cutting force ; Cutting parameters ; Engineering ; Fluid flow ; Industrial and Production Engineering ; Iron ; Machining ; Mechanical Engineering ; Media Management ; Micromachining ; Original Article ; Simulation ; Smooth particle hydrodynamics ; Stress concentration ; Stress distribution ; Thickness</subject><ispartof>International journal of advanced manufacturing technology, 2020-06, Vol.108 (7-8), p.2121-2130</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-2ad740f163d83d9c9208a4fd3bdd0b61ba455e88fc2b0ba4a4bc6137904e9eef3</citedby><cites>FETCH-LOGICAL-c347t-2ad740f163d83d9c9208a4fd3bdd0b61ba455e88fc2b0ba4a4bc6137904e9eef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-020-05528-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-020-05528-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Guo, Xiaoguang</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Cai, Linquan</creatorcontrib><creatorcontrib>Guo, Jiang</creatorcontrib><creatorcontrib>Kang, Renke</creatorcontrib><creatorcontrib>Jin, Zhuji</creatorcontrib><creatorcontrib>Guo, Dongming</creatorcontrib><title>Effects of tool edge radius on chip formation during the micromachining of pure iron</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The smoothed particle hydrodynamics simulation model of micromachining of industrial pure iron was established to study the effect of tool edge radius on chip formation in this paper. The process of chip production was studied by particle displacement method, and cutting force and stress were analyzed. Meanwhile, the mechanism of chip formation was revealed. The simulation results show that the tool edge radius has significant effects on chip formation in micromachining. When the depth of cut is 0.16 times of the tool edge radius, the chips begin to produce. And the minimum cutting thickness decreases with the increase of the ratio of the cutting depth to the tool edge radius, which means that chips are more easily to be produced with the decrease of the tool edge radius. Meanwhile, the larger the tool edge radius is, the wider the stress distribution area is and the greater the fluctuation of the cutting force is. Finally, values of the minimum cutting thickness under different ratios obtained by the theoretical formula are basically consistent with the simulation results, verifying the correctness of the simulation results. This paper provided valuable insights into reasonable selection of tool parameters for improving machining precision.</description><subject>CAE) and Design</subject><subject>Chip formation</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cutting force</subject><subject>Cutting parameters</subject><subject>Engineering</subject><subject>Fluid flow</subject><subject>Industrial and Production Engineering</subject><subject>Iron</subject><subject>Machining</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Micromachining</subject><subject>Original Article</subject><subject>Simulation</subject><subject>Smooth particle hydrodynamics</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Thickness</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMQfOH7GdEVXlQ6rEUmbLie02VRMHOxn673EJEhvD6XSn5z3LD0L3BB4JgHxKAERCATRXWVJVnC7QgnDGCgakvEQLoEIVTAp1jW5SOmRcEKEWaLv23jVjwsHjMYQjdnbncDS2nfKux82-HbAPsTNjm0c7xbbf4XHvcNc2MXQmA_15lfPDFB1uY-hv0ZU3x-TufvsSfb6st6u3YvPx-r563hQN43IsqLGSgyeCWcVs1VQUlOHestpaqAWpDS9Lp5RvaA15MLxuBGGyAu4q5zxboof57hDD1-TSqA9hin1-UlNeQQVUyvJ_ipRECqpEpuhM5V-lFJ3XQ2w7E0-agD471rNjnR3rH8f6lENsDqXh7MXFv9P_pL4B7oZ_RQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Guo, Xiaoguang</creator><creator>Li, Yang</creator><creator>Cai, Linquan</creator><creator>Guo, Jiang</creator><creator>Kang, Renke</creator><creator>Jin, Zhuji</creator><creator>Guo, Dongming</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200601</creationdate><title>Effects of tool edge radius on chip formation during the micromachining of pure iron</title><author>Guo, Xiaoguang ; Li, Yang ; Cai, Linquan ; Guo, Jiang ; Kang, Renke ; Jin, Zhuji ; Guo, Dongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-2ad740f163d83d9c9208a4fd3bdd0b61ba455e88fc2b0ba4a4bc6137904e9eef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CAE) and Design</topic><topic>Chip formation</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cutting force</topic><topic>Cutting parameters</topic><topic>Engineering</topic><topic>Fluid flow</topic><topic>Industrial and Production Engineering</topic><topic>Iron</topic><topic>Machining</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Micromachining</topic><topic>Original Article</topic><topic>Simulation</topic><topic>Smooth particle hydrodynamics</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xiaoguang</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Cai, Linquan</creatorcontrib><creatorcontrib>Guo, Jiang</creatorcontrib><creatorcontrib>Kang, Renke</creatorcontrib><creatorcontrib>Jin, Zhuji</creatorcontrib><creatorcontrib>Guo, Dongming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xiaoguang</au><au>Li, Yang</au><au>Cai, Linquan</au><au>Guo, Jiang</au><au>Kang, Renke</au><au>Jin, Zhuji</au><au>Guo, Dongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of tool edge radius on chip formation during the micromachining of pure iron</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>108</volume><issue>7-8</issue><spage>2121</spage><epage>2130</epage><pages>2121-2130</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The smoothed particle hydrodynamics simulation model of micromachining of industrial pure iron was established to study the effect of tool edge radius on chip formation in this paper. The process of chip production was studied by particle displacement method, and cutting force and stress were analyzed. Meanwhile, the mechanism of chip formation was revealed. The simulation results show that the tool edge radius has significant effects on chip formation in micromachining. When the depth of cut is 0.16 times of the tool edge radius, the chips begin to produce. And the minimum cutting thickness decreases with the increase of the ratio of the cutting depth to the tool edge radius, which means that chips are more easily to be produced with the decrease of the tool edge radius. Meanwhile, the larger the tool edge radius is, the wider the stress distribution area is and the greater the fluctuation of the cutting force is. Finally, values of the minimum cutting thickness under different ratios obtained by the theoretical formula are basically consistent with the simulation results, verifying the correctness of the simulation results. This paper provided valuable insights into reasonable selection of tool parameters for improving machining precision.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-05528-y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2020-06, Vol.108 (7-8), p.2121-2130
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490902775
source SpringerLink Journals
subjects CAE) and Design
Chip formation
Computational fluid dynamics
Computer simulation
Computer-Aided Engineering (CAD
Cutting force
Cutting parameters
Engineering
Fluid flow
Industrial and Production Engineering
Iron
Machining
Mechanical Engineering
Media Management
Micromachining
Original Article
Simulation
Smooth particle hydrodynamics
Stress concentration
Stress distribution
Thickness
title Effects of tool edge radius on chip formation during the micromachining of pure iron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A09%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20tool%20edge%20radius%20on%20chip%20formation%20during%20the%20micromachining%20of%20pure%20iron&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Guo,%20Xiaoguang&rft.date=2020-06-01&rft.volume=108&rft.issue=7-8&rft.spage=2121&rft.epage=2130&rft.pages=2121-2130&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-05528-y&rft_dat=%3Cproquest_cross%3E2415176286%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415176286&rft_id=info:pmid/&rfr_iscdi=true