Analysis of asymmetrical rolling of strip considering two deformation region types
Analytical models of two deformation region types considering the percentages of three regions in the plastic deformation zone are proposed for analyzing asymmetrical rolling of strip and used to calculate the critical speed ratio, three region percentages, roll force, and roll torque. The effective...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2020-10, Vol.110 (9-10), p.2767-2785 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2785 |
---|---|
container_issue | 9-10 |
container_start_page | 2767 |
container_title | International journal of advanced manufacturing technology |
container_volume | 110 |
creator | Sun, Xiangkun Liu, Xianghua Wang, Ji Qi, Junlong |
description | Analytical models of two deformation region types considering the percentages of three regions in the plastic deformation zone are proposed for analyzing asymmetrical rolling of strip and used to calculate the critical speed ratio, three region percentages, roll force, and roll torque. The effective range of speed ratio on thickness reduction increases with increasing critical speed ratio. When the deformation region type is backward-slip zone + cross-shear zone + forward-slip zone (B+C+F), with increasing speed ratio, the thickness reduction in asymmetrical strip rolling increases evidently, but remains unchanged when the critical speed ratio is exceeded, where the deformation region type is backward-slip zone + cross-shear zone (B+C). It is achievable to increase thickness reduction by increasing the roll force and front tension, which can not only increase the reduction rate, but also increase the critical speed ratio. The effect of asymmetrical rolling on thickness reduction is enhanced with decreasing of the roll force and front and back tension because of the increasing cross-shear zone percentage. |
doi_str_mv | 10.1007/s00170-020-06022-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2490900184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490900184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6c2db4fa386c4f162ac37b6badf0345f679ff51b92664e3b44e77ca7701a92a43</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYMoOI7-AVcFl1K9eTRpl0PxBQOC6DqkaTJ06DQ16TD035tORXfiIlw4nHNzz4fQNYY7DCDuAwAWkAKJjwMhKT5BC8woTSng7BQtgPA8pYLn5-gihG20c8zzBXpbdaodQxMSZxMVxt3ODL7Rqk28a9um20x6iFKfaNeFpjZ-EoeDS2pjnd-poXFd4s1mGsPYm3CJzqxqg7n6nkv08fjwXj6n69enl3K1TjXFxZByTeqKWUVzrpnFnChNRcUrVVugLLNcFNZmuCoI58zQijEjhFZCAFYFUYwu0c28t_fuc2_CILdu72OdIAkroIgd88lFZpf2LgRvrOx9s1N-lBjkxE7O7GRkJ4_sJI6h2zl0MJWzQTem0-YnCAAZL3I-fQFAojv_v7tshiOy0u27IUbpHA39xNX43w5_nPcFJMaTIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490900184</pqid></control><display><type>article</type><title>Analysis of asymmetrical rolling of strip considering two deformation region types</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sun, Xiangkun ; Liu, Xianghua ; Wang, Ji ; Qi, Junlong</creator><creatorcontrib>Sun, Xiangkun ; Liu, Xianghua ; Wang, Ji ; Qi, Junlong</creatorcontrib><description>Analytical models of two deformation region types considering the percentages of three regions in the plastic deformation zone are proposed for analyzing asymmetrical rolling of strip and used to calculate the critical speed ratio, three region percentages, roll force, and roll torque. The effective range of speed ratio on thickness reduction increases with increasing critical speed ratio. When the deformation region type is backward-slip zone + cross-shear zone + forward-slip zone (B+C+F), with increasing speed ratio, the thickness reduction in asymmetrical strip rolling increases evidently, but remains unchanged when the critical speed ratio is exceeded, where the deformation region type is backward-slip zone + cross-shear zone (B+C). It is achievable to increase thickness reduction by increasing the roll force and front tension, which can not only increase the reduction rate, but also increase the critical speed ratio. The effect of asymmetrical rolling on thickness reduction is enhanced with decreasing of the roll force and front and back tension because of the increasing cross-shear zone percentage.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-06022-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Asymmetry ; Automation & Control Systems ; CAE) and Design ; Computer-Aided Engineering (CAD ; Deformation analysis ; Engineering ; Engineering, Manufacturing ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Original Article ; Plastic deformation ; Reduction ; Roll load ; Science & Technology ; Shear zone ; Slip ; Strip ; Technology ; Tension rolling ; Thickness</subject><ispartof>International journal of advanced manufacturing technology, 2020-10, Vol.110 (9-10), p.2767-2785</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000569860900002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-6c2db4fa386c4f162ac37b6badf0345f679ff51b92664e3b44e77ca7701a92a43</citedby><cites>FETCH-LOGICAL-c319t-6c2db4fa386c4f162ac37b6badf0345f679ff51b92664e3b44e77ca7701a92a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-020-06022-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-020-06022-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Sun, Xiangkun</creatorcontrib><creatorcontrib>Liu, Xianghua</creatorcontrib><creatorcontrib>Wang, Ji</creatorcontrib><creatorcontrib>Qi, Junlong</creatorcontrib><title>Analysis of asymmetrical rolling of strip considering two deformation region types</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><addtitle>INT J ADV MANUF TECH</addtitle><description>Analytical models of two deformation region types considering the percentages of three regions in the plastic deformation zone are proposed for analyzing asymmetrical rolling of strip and used to calculate the critical speed ratio, three region percentages, roll force, and roll torque. The effective range of speed ratio on thickness reduction increases with increasing critical speed ratio. When the deformation region type is backward-slip zone + cross-shear zone + forward-slip zone (B+C+F), with increasing speed ratio, the thickness reduction in asymmetrical strip rolling increases evidently, but remains unchanged when the critical speed ratio is exceeded, where the deformation region type is backward-slip zone + cross-shear zone (B+C). It is achievable to increase thickness reduction by increasing the roll force and front tension, which can not only increase the reduction rate, but also increase the critical speed ratio. The effect of asymmetrical rolling on thickness reduction is enhanced with decreasing of the roll force and front and back tension because of the increasing cross-shear zone percentage.</description><subject>Asymmetry</subject><subject>Automation & Control Systems</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Deformation analysis</subject><subject>Engineering</subject><subject>Engineering, Manufacturing</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Plastic deformation</subject><subject>Reduction</subject><subject>Roll load</subject><subject>Science & Technology</subject><subject>Shear zone</subject><subject>Slip</subject><subject>Strip</subject><subject>Technology</subject><subject>Tension rolling</subject><subject>Thickness</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkEtLxDAUhYMoOI7-AVcFl1K9eTRpl0PxBQOC6DqkaTJ06DQ16TD035tORXfiIlw4nHNzz4fQNYY7DCDuAwAWkAKJjwMhKT5BC8woTSng7BQtgPA8pYLn5-gihG20c8zzBXpbdaodQxMSZxMVxt3ODL7Rqk28a9um20x6iFKfaNeFpjZ-EoeDS2pjnd-poXFd4s1mGsPYm3CJzqxqg7n6nkv08fjwXj6n69enl3K1TjXFxZByTeqKWUVzrpnFnChNRcUrVVugLLNcFNZmuCoI58zQijEjhFZCAFYFUYwu0c28t_fuc2_CILdu72OdIAkroIgd88lFZpf2LgRvrOx9s1N-lBjkxE7O7GRkJ4_sJI6h2zl0MJWzQTem0-YnCAAZL3I-fQFAojv_v7tshiOy0u27IUbpHA39xNX43w5_nPcFJMaTIA</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Sun, Xiangkun</creator><creator>Liu, Xianghua</creator><creator>Wang, Ji</creator><creator>Qi, Junlong</creator><general>Springer London</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201001</creationdate><title>Analysis of asymmetrical rolling of strip considering two deformation region types</title><author>Sun, Xiangkun ; Liu, Xianghua ; Wang, Ji ; Qi, Junlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6c2db4fa386c4f162ac37b6badf0345f679ff51b92664e3b44e77ca7701a92a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymmetry</topic><topic>Automation & Control Systems</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Deformation analysis</topic><topic>Engineering</topic><topic>Engineering, Manufacturing</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Plastic deformation</topic><topic>Reduction</topic><topic>Roll load</topic><topic>Science & Technology</topic><topic>Shear zone</topic><topic>Slip</topic><topic>Strip</topic><topic>Technology</topic><topic>Tension rolling</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xiangkun</creatorcontrib><creatorcontrib>Liu, Xianghua</creatorcontrib><creatorcontrib>Wang, Ji</creatorcontrib><creatorcontrib>Qi, Junlong</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xiangkun</au><au>Liu, Xianghua</au><au>Wang, Ji</au><au>Qi, Junlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of asymmetrical rolling of strip considering two deformation region types</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><stitle>INT J ADV MANUF TECH</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>110</volume><issue>9-10</issue><spage>2767</spage><epage>2785</epage><pages>2767-2785</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Analytical models of two deformation region types considering the percentages of three regions in the plastic deformation zone are proposed for analyzing asymmetrical rolling of strip and used to calculate the critical speed ratio, three region percentages, roll force, and roll torque. The effective range of speed ratio on thickness reduction increases with increasing critical speed ratio. When the deformation region type is backward-slip zone + cross-shear zone + forward-slip zone (B+C+F), with increasing speed ratio, the thickness reduction in asymmetrical strip rolling increases evidently, but remains unchanged when the critical speed ratio is exceeded, where the deformation region type is backward-slip zone + cross-shear zone (B+C). It is achievable to increase thickness reduction by increasing the roll force and front tension, which can not only increase the reduction rate, but also increase the critical speed ratio. The effect of asymmetrical rolling on thickness reduction is enhanced with decreasing of the roll force and front and back tension because of the increasing cross-shear zone percentage.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-06022-1</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2020-10, Vol.110 (9-10), p.2767-2785 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2490900184 |
source | SpringerLink Journals - AutoHoldings |
subjects | Asymmetry Automation & Control Systems CAE) and Design Computer-Aided Engineering (CAD Deformation analysis Engineering Engineering, Manufacturing Industrial and Production Engineering Mechanical Engineering Media Management Original Article Plastic deformation Reduction Roll load Science & Technology Shear zone Slip Strip Technology Tension rolling Thickness |
title | Analysis of asymmetrical rolling of strip considering two deformation region types |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20asymmetrical%20rolling%20of%20strip%20considering%20two%20deformation%20region%20types&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Sun,%20Xiangkun&rft.date=2020-10-01&rft.volume=110&rft.issue=9-10&rft.spage=2767&rft.epage=2785&rft.pages=2767-2785&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-06022-1&rft_dat=%3Cproquest_webof%3E2490900184%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490900184&rft_id=info:pmid/&rfr_iscdi=true |