Controlling the porosity using exponential decay heat input regimes during electron beam wire-feed additive manufacturing of Al-Mg alloy
Electron beam wire-feed additive manufacturing is given less attention in research community compared with other additive manufacturing methods, despite it allows higher deposition rate and less porosity. However, both gas and shrinking porosity are still met even with this method especially if appl...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2020-06, Vol.108 (9-10), p.2823-2838 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2838 |
---|---|
container_issue | 9-10 |
container_start_page | 2823 |
container_title | International journal of advanced manufacturing technology |
container_volume | 108 |
creator | Utyaganova, V. R. Filippov, Andrey V. Shamarin, N. N. Vorontsov, A. V. Savchenko, N. L. Fortuna, S. V. Gurianov, D. A. Chumaevskii, A. V. Rubtsov, V. E. Tarasov, S. Yu |
description | Electron beam wire-feed additive manufacturing is given less attention in research community compared with other additive manufacturing methods, despite it allows higher deposition rate and less porosity. However, both gas and shrinking porosity are still met even with this method especially if applied to light alloys. The excess heat input may be the reason for evaporation of volatile metals, and forming the gas pores especially in the top layers of the built sample where cooling rate is reduced. Therefore, exponential decay heat input was used to grow AA5356 samples. Microstructural and mechanical characterization of the samples obtained at mean low, medium, and high heat input levels was carried out. An optimal heat input gradient was determined which allowed growing a defect-free metal in the bottom part of the sample and forcing out the shrinkage cavities to the top part. Shrinkage and gas pore structure formation was analyzed as a function of the heat input gradient and along the building direction. Gas pores resulted at two higher heat input regimes as a result of evaporation of magnesium as supported by the results of EDS and XRD. Tensile test showed the ultimate strength of the defect-free part equal to that of the base AA5356. |
doi_str_mv | 10.1007/s00170-020-05539-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490893247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490893247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-e5919caf7d120096df9348a5fcd91c77c01de8b604d516baa3bc542334c4d4363</originalsourceid><addsrcrecordid>eNp9kUFrGzEQhUVJoY7bP9CTIGel0kq7Wh2NSZOAQy7pWcjSrC2zXm0lbVv_g_7syt5Cbj4MA8P33sB7CH1l9J5RKr8lSpmkhFZl6poroj6gBROcE05ZfYMWtGpawmXTfkK3KR0K3rCmXaC_6zDkGPreDzuc94DHEEPy-YSndD7BnzEMMGRveuzAmhPeg8nYD-OUcYSdP0LCbooXtgdbvAa8BXPEv30E0gE4bJzz2f8CfDTD1BmbZzx0eNWTlx02fR9On9HHzvQJvvzfS_Tj-8Pb-olsXh-f16sNsYLxTKBWTFnTSccqSlXjOsVFa-rOOsWslJYyB-22ocLVrNkaw7e2FhXnwgoneMOX6G72HWP4OUHK-hCmOJSXuhKKtopXQl6nmJQl1IoWqpopWzJLETo9Rn808aQZ1ede9NyLLr3oSy9aFRGfRWk8xwDx3fqK6h_vipHz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417701520</pqid></control><display><type>article</type><title>Controlling the porosity using exponential decay heat input regimes during electron beam wire-feed additive manufacturing of Al-Mg alloy</title><source>SpringerLink Journals - AutoHoldings</source><creator>Utyaganova, V. R. ; Filippov, Andrey V. ; Shamarin, N. N. ; Vorontsov, A. V. ; Savchenko, N. L. ; Fortuna, S. V. ; Gurianov, D. A. ; Chumaevskii, A. V. ; Rubtsov, V. E. ; Tarasov, S. Yu</creator><creatorcontrib>Utyaganova, V. R. ; Filippov, Andrey V. ; Shamarin, N. N. ; Vorontsov, A. V. ; Savchenko, N. L. ; Fortuna, S. V. ; Gurianov, D. A. ; Chumaevskii, A. V. ; Rubtsov, V. E. ; Tarasov, S. Yu</creatorcontrib><description>Electron beam wire-feed additive manufacturing is given less attention in research community compared with other additive manufacturing methods, despite it allows higher deposition rate and less porosity. However, both gas and shrinking porosity are still met even with this method especially if applied to light alloys. The excess heat input may be the reason for evaporation of volatile metals, and forming the gas pores especially in the top layers of the built sample where cooling rate is reduced. Therefore, exponential decay heat input was used to grow AA5356 samples. Microstructural and mechanical characterization of the samples obtained at mean low, medium, and high heat input levels was carried out. An optimal heat input gradient was determined which allowed growing a defect-free metal in the bottom part of the sample and forcing out the shrinkage cavities to the top part. Shrinkage and gas pore structure formation was analyzed as a function of the heat input gradient and along the building direction. Gas pores resulted at two higher heat input regimes as a result of evaporation of magnesium as supported by the results of EDS and XRD. Tensile test showed the ultimate strength of the defect-free part equal to that of the base AA5356.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-05539-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Additive manufacturing ; Aluminum base alloys ; CAE) and Design ; Computer-Aided Engineering (CAD ; Cooling rate ; Electron beams ; Engineering ; Evaporation ; Industrial and Production Engineering ; Light metal alloys ; Mechanical Engineering ; Mechanical properties ; Media Management ; Original Article ; Porosity ; Production methods ; Shrinkage ; Tensile tests ; Ultimate tensile strength ; Wire</subject><ispartof>International journal of advanced manufacturing technology, 2020-06, Vol.108 (9-10), p.2823-2838</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-e5919caf7d120096df9348a5fcd91c77c01de8b604d516baa3bc542334c4d4363</citedby><cites>FETCH-LOGICAL-c413t-e5919caf7d120096df9348a5fcd91c77c01de8b604d516baa3bc542334c4d4363</cites><orcidid>0000-0003-0487-8382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-020-05539-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-020-05539-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Utyaganova, V. R.</creatorcontrib><creatorcontrib>Filippov, Andrey V.</creatorcontrib><creatorcontrib>Shamarin, N. N.</creatorcontrib><creatorcontrib>Vorontsov, A. V.</creatorcontrib><creatorcontrib>Savchenko, N. L.</creatorcontrib><creatorcontrib>Fortuna, S. V.</creatorcontrib><creatorcontrib>Gurianov, D. A.</creatorcontrib><creatorcontrib>Chumaevskii, A. V.</creatorcontrib><creatorcontrib>Rubtsov, V. E.</creatorcontrib><creatorcontrib>Tarasov, S. Yu</creatorcontrib><title>Controlling the porosity using exponential decay heat input regimes during electron beam wire-feed additive manufacturing of Al-Mg alloy</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Electron beam wire-feed additive manufacturing is given less attention in research community compared with other additive manufacturing methods, despite it allows higher deposition rate and less porosity. However, both gas and shrinking porosity are still met even with this method especially if applied to light alloys. The excess heat input may be the reason for evaporation of volatile metals, and forming the gas pores especially in the top layers of the built sample where cooling rate is reduced. Therefore, exponential decay heat input was used to grow AA5356 samples. Microstructural and mechanical characterization of the samples obtained at mean low, medium, and high heat input levels was carried out. An optimal heat input gradient was determined which allowed growing a defect-free metal in the bottom part of the sample and forcing out the shrinkage cavities to the top part. Shrinkage and gas pore structure formation was analyzed as a function of the heat input gradient and along the building direction. Gas pores resulted at two higher heat input regimes as a result of evaporation of magnesium as supported by the results of EDS and XRD. Tensile test showed the ultimate strength of the defect-free part equal to that of the base AA5356.</description><subject>Additive manufacturing</subject><subject>Aluminum base alloys</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cooling rate</subject><subject>Electron beams</subject><subject>Engineering</subject><subject>Evaporation</subject><subject>Industrial and Production Engineering</subject><subject>Light metal alloys</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Porosity</subject><subject>Production methods</subject><subject>Shrinkage</subject><subject>Tensile tests</subject><subject>Ultimate tensile strength</subject><subject>Wire</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUFrGzEQhUVJoY7bP9CTIGel0kq7Wh2NSZOAQy7pWcjSrC2zXm0lbVv_g_7syt5Cbj4MA8P33sB7CH1l9J5RKr8lSpmkhFZl6poroj6gBROcE05ZfYMWtGpawmXTfkK3KR0K3rCmXaC_6zDkGPreDzuc94DHEEPy-YSndD7BnzEMMGRveuzAmhPeg8nYD-OUcYSdP0LCbooXtgdbvAa8BXPEv30E0gE4bJzz2f8CfDTD1BmbZzx0eNWTlx02fR9On9HHzvQJvvzfS_Tj-8Pb-olsXh-f16sNsYLxTKBWTFnTSccqSlXjOsVFa-rOOsWslJYyB-22ocLVrNkaw7e2FhXnwgoneMOX6G72HWP4OUHK-hCmOJSXuhKKtopXQl6nmJQl1IoWqpopWzJLETo9Rn808aQZ1ede9NyLLr3oSy9aFRGfRWk8xwDx3fqK6h_vipHz</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Utyaganova, V. R.</creator><creator>Filippov, Andrey V.</creator><creator>Shamarin, N. N.</creator><creator>Vorontsov, A. V.</creator><creator>Savchenko, N. L.</creator><creator>Fortuna, S. V.</creator><creator>Gurianov, D. A.</creator><creator>Chumaevskii, A. V.</creator><creator>Rubtsov, V. E.</creator><creator>Tarasov, S. Yu</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0487-8382</orcidid></search><sort><creationdate>20200601</creationdate><title>Controlling the porosity using exponential decay heat input regimes during electron beam wire-feed additive manufacturing of Al-Mg alloy</title><author>Utyaganova, V. R. ; Filippov, Andrey V. ; Shamarin, N. N. ; Vorontsov, A. V. ; Savchenko, N. L. ; Fortuna, S. V. ; Gurianov, D. A. ; Chumaevskii, A. V. ; Rubtsov, V. E. ; Tarasov, S. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-e5919caf7d120096df9348a5fcd91c77c01de8b604d516baa3bc542334c4d4363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additive manufacturing</topic><topic>Aluminum base alloys</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cooling rate</topic><topic>Electron beams</topic><topic>Engineering</topic><topic>Evaporation</topic><topic>Industrial and Production Engineering</topic><topic>Light metal alloys</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Porosity</topic><topic>Production methods</topic><topic>Shrinkage</topic><topic>Tensile tests</topic><topic>Ultimate tensile strength</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Utyaganova, V. R.</creatorcontrib><creatorcontrib>Filippov, Andrey V.</creatorcontrib><creatorcontrib>Shamarin, N. N.</creatorcontrib><creatorcontrib>Vorontsov, A. V.</creatorcontrib><creatorcontrib>Savchenko, N. L.</creatorcontrib><creatorcontrib>Fortuna, S. V.</creatorcontrib><creatorcontrib>Gurianov, D. A.</creatorcontrib><creatorcontrib>Chumaevskii, A. V.</creatorcontrib><creatorcontrib>Rubtsov, V. E.</creatorcontrib><creatorcontrib>Tarasov, S. Yu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Utyaganova, V. R.</au><au>Filippov, Andrey V.</au><au>Shamarin, N. N.</au><au>Vorontsov, A. V.</au><au>Savchenko, N. L.</au><au>Fortuna, S. V.</au><au>Gurianov, D. A.</au><au>Chumaevskii, A. V.</au><au>Rubtsov, V. E.</au><au>Tarasov, S. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the porosity using exponential decay heat input regimes during electron beam wire-feed additive manufacturing of Al-Mg alloy</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>108</volume><issue>9-10</issue><spage>2823</spage><epage>2838</epage><pages>2823-2838</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Electron beam wire-feed additive manufacturing is given less attention in research community compared with other additive manufacturing methods, despite it allows higher deposition rate and less porosity. However, both gas and shrinking porosity are still met even with this method especially if applied to light alloys. The excess heat input may be the reason for evaporation of volatile metals, and forming the gas pores especially in the top layers of the built sample where cooling rate is reduced. Therefore, exponential decay heat input was used to grow AA5356 samples. Microstructural and mechanical characterization of the samples obtained at mean low, medium, and high heat input levels was carried out. An optimal heat input gradient was determined which allowed growing a defect-free metal in the bottom part of the sample and forcing out the shrinkage cavities to the top part. Shrinkage and gas pore structure formation was analyzed as a function of the heat input gradient and along the building direction. Gas pores resulted at two higher heat input regimes as a result of evaporation of magnesium as supported by the results of EDS and XRD. Tensile test showed the ultimate strength of the defect-free part equal to that of the base AA5356.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-05539-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0487-8382</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2020-06, Vol.108 (9-10), p.2823-2838 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2490893247 |
source | SpringerLink Journals - AutoHoldings |
subjects | Additive manufacturing Aluminum base alloys CAE) and Design Computer-Aided Engineering (CAD Cooling rate Electron beams Engineering Evaporation Industrial and Production Engineering Light metal alloys Mechanical Engineering Mechanical properties Media Management Original Article Porosity Production methods Shrinkage Tensile tests Ultimate tensile strength Wire |
title | Controlling the porosity using exponential decay heat input regimes during electron beam wire-feed additive manufacturing of Al-Mg alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A33%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20porosity%20using%20exponential%20decay%20heat%20input%20regimes%20during%20electron%20beam%20wire-feed%20additive%20manufacturing%20of%20Al-Mg%20alloy&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Utyaganova,%20V.%20R.&rft.date=2020-06-01&rft.volume=108&rft.issue=9-10&rft.spage=2823&rft.epage=2838&rft.pages=2823-2838&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-05539-9&rft_dat=%3Cproquest_cross%3E2490893247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417701520&rft_id=info:pmid/&rfr_iscdi=true |