Controlling the porosity using exponential decay heat input regimes during electron beam wire-feed additive manufacturing of Al-Mg alloy

Electron beam wire-feed additive manufacturing is given less attention in research community compared with other additive manufacturing methods, despite it allows higher deposition rate and less porosity. However, both gas and shrinking porosity are still met even with this method especially if appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2020-06, Vol.108 (9-10), p.2823-2838
Hauptverfasser: Utyaganova, V. R., Filippov, Andrey V., Shamarin, N. N., Vorontsov, A. V., Savchenko, N. L., Fortuna, S. V., Gurianov, D. A., Chumaevskii, A. V., Rubtsov, V. E., Tarasov, S. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2838
container_issue 9-10
container_start_page 2823
container_title International journal of advanced manufacturing technology
container_volume 108
creator Utyaganova, V. R.
Filippov, Andrey V.
Shamarin, N. N.
Vorontsov, A. V.
Savchenko, N. L.
Fortuna, S. V.
Gurianov, D. A.
Chumaevskii, A. V.
Rubtsov, V. E.
Tarasov, S. Yu
description Electron beam wire-feed additive manufacturing is given less attention in research community compared with other additive manufacturing methods, despite it allows higher deposition rate and less porosity. However, both gas and shrinking porosity are still met even with this method especially if applied to light alloys. The excess heat input may be the reason for evaporation of volatile metals, and forming the gas pores especially in the top layers of the built sample where cooling rate is reduced. Therefore, exponential decay heat input was used to grow AA5356 samples. Microstructural and mechanical characterization of the samples obtained at mean low, medium, and high heat input levels was carried out. An optimal heat input gradient was determined which allowed growing a defect-free metal in the bottom part of the sample and forcing out the shrinkage cavities to the top part. Shrinkage and gas pore structure formation was analyzed as a function of the heat input gradient and along the building direction. Gas pores resulted at two higher heat input regimes as a result of evaporation of magnesium as supported by the results of EDS and XRD. Tensile test showed the ultimate strength of the defect-free part equal to that of the base AA5356.
doi_str_mv 10.1007/s00170-020-05539-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490893247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490893247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-e5919caf7d120096df9348a5fcd91c77c01de8b604d516baa3bc542334c4d4363</originalsourceid><addsrcrecordid>eNp9kUFrGzEQhUVJoY7bP9CTIGel0kq7Wh2NSZOAQy7pWcjSrC2zXm0lbVv_g_7syt5Cbj4MA8P33sB7CH1l9J5RKr8lSpmkhFZl6poroj6gBROcE05ZfYMWtGpawmXTfkK3KR0K3rCmXaC_6zDkGPreDzuc94DHEEPy-YSndD7BnzEMMGRveuzAmhPeg8nYD-OUcYSdP0LCbooXtgdbvAa8BXPEv30E0gE4bJzz2f8CfDTD1BmbZzx0eNWTlx02fR9On9HHzvQJvvzfS_Tj-8Pb-olsXh-f16sNsYLxTKBWTFnTSccqSlXjOsVFa-rOOsWslJYyB-22ocLVrNkaw7e2FhXnwgoneMOX6G72HWP4OUHK-hCmOJSXuhKKtopXQl6nmJQl1IoWqpopWzJLETo9Rn808aQZ1ede9NyLLr3oSy9aFRGfRWk8xwDx3fqK6h_vipHz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417701520</pqid></control><display><type>article</type><title>Controlling the porosity using exponential decay heat input regimes during electron beam wire-feed additive manufacturing of Al-Mg alloy</title><source>SpringerLink Journals - AutoHoldings</source><creator>Utyaganova, V. R. ; Filippov, Andrey V. ; Shamarin, N. N. ; Vorontsov, A. V. ; Savchenko, N. L. ; Fortuna, S. V. ; Gurianov, D. A. ; Chumaevskii, A. V. ; Rubtsov, V. E. ; Tarasov, S. Yu</creator><creatorcontrib>Utyaganova, V. R. ; Filippov, Andrey V. ; Shamarin, N. N. ; Vorontsov, A. V. ; Savchenko, N. L. ; Fortuna, S. V. ; Gurianov, D. A. ; Chumaevskii, A. V. ; Rubtsov, V. E. ; Tarasov, S. Yu</creatorcontrib><description>Electron beam wire-feed additive manufacturing is given less attention in research community compared with other additive manufacturing methods, despite it allows higher deposition rate and less porosity. However, both gas and shrinking porosity are still met even with this method especially if applied to light alloys. The excess heat input may be the reason for evaporation of volatile metals, and forming the gas pores especially in the top layers of the built sample where cooling rate is reduced. Therefore, exponential decay heat input was used to grow AA5356 samples. Microstructural and mechanical characterization of the samples obtained at mean low, medium, and high heat input levels was carried out. An optimal heat input gradient was determined which allowed growing a defect-free metal in the bottom part of the sample and forcing out the shrinkage cavities to the top part. Shrinkage and gas pore structure formation was analyzed as a function of the heat input gradient and along the building direction. Gas pores resulted at two higher heat input regimes as a result of evaporation of magnesium as supported by the results of EDS and XRD. Tensile test showed the ultimate strength of the defect-free part equal to that of the base AA5356.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-020-05539-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Additive manufacturing ; Aluminum base alloys ; CAE) and Design ; Computer-Aided Engineering (CAD ; Cooling rate ; Electron beams ; Engineering ; Evaporation ; Industrial and Production Engineering ; Light metal alloys ; Mechanical Engineering ; Mechanical properties ; Media Management ; Original Article ; Porosity ; Production methods ; Shrinkage ; Tensile tests ; Ultimate tensile strength ; Wire</subject><ispartof>International journal of advanced manufacturing technology, 2020-06, Vol.108 (9-10), p.2823-2838</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-e5919caf7d120096df9348a5fcd91c77c01de8b604d516baa3bc542334c4d4363</citedby><cites>FETCH-LOGICAL-c413t-e5919caf7d120096df9348a5fcd91c77c01de8b604d516baa3bc542334c4d4363</cites><orcidid>0000-0003-0487-8382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-020-05539-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-020-05539-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Utyaganova, V. R.</creatorcontrib><creatorcontrib>Filippov, Andrey V.</creatorcontrib><creatorcontrib>Shamarin, N. N.</creatorcontrib><creatorcontrib>Vorontsov, A. V.</creatorcontrib><creatorcontrib>Savchenko, N. L.</creatorcontrib><creatorcontrib>Fortuna, S. V.</creatorcontrib><creatorcontrib>Gurianov, D. A.</creatorcontrib><creatorcontrib>Chumaevskii, A. V.</creatorcontrib><creatorcontrib>Rubtsov, V. E.</creatorcontrib><creatorcontrib>Tarasov, S. Yu</creatorcontrib><title>Controlling the porosity using exponential decay heat input regimes during electron beam wire-feed additive manufacturing of Al-Mg alloy</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Electron beam wire-feed additive manufacturing is given less attention in research community compared with other additive manufacturing methods, despite it allows higher deposition rate and less porosity. However, both gas and shrinking porosity are still met even with this method especially if applied to light alloys. The excess heat input may be the reason for evaporation of volatile metals, and forming the gas pores especially in the top layers of the built sample where cooling rate is reduced. Therefore, exponential decay heat input was used to grow AA5356 samples. Microstructural and mechanical characterization of the samples obtained at mean low, medium, and high heat input levels was carried out. An optimal heat input gradient was determined which allowed growing a defect-free metal in the bottom part of the sample and forcing out the shrinkage cavities to the top part. Shrinkage and gas pore structure formation was analyzed as a function of the heat input gradient and along the building direction. Gas pores resulted at two higher heat input regimes as a result of evaporation of magnesium as supported by the results of EDS and XRD. Tensile test showed the ultimate strength of the defect-free part equal to that of the base AA5356.</description><subject>Additive manufacturing</subject><subject>Aluminum base alloys</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cooling rate</subject><subject>Electron beams</subject><subject>Engineering</subject><subject>Evaporation</subject><subject>Industrial and Production Engineering</subject><subject>Light metal alloys</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Porosity</subject><subject>Production methods</subject><subject>Shrinkage</subject><subject>Tensile tests</subject><subject>Ultimate tensile strength</subject><subject>Wire</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUFrGzEQhUVJoY7bP9CTIGel0kq7Wh2NSZOAQy7pWcjSrC2zXm0lbVv_g_7syt5Cbj4MA8P33sB7CH1l9J5RKr8lSpmkhFZl6poroj6gBROcE05ZfYMWtGpawmXTfkK3KR0K3rCmXaC_6zDkGPreDzuc94DHEEPy-YSndD7BnzEMMGRveuzAmhPeg8nYD-OUcYSdP0LCbooXtgdbvAa8BXPEv30E0gE4bJzz2f8CfDTD1BmbZzx0eNWTlx02fR9On9HHzvQJvvzfS_Tj-8Pb-olsXh-f16sNsYLxTKBWTFnTSccqSlXjOsVFa-rOOsWslJYyB-22ocLVrNkaw7e2FhXnwgoneMOX6G72HWP4OUHK-hCmOJSXuhKKtopXQl6nmJQl1IoWqpopWzJLETo9Rn808aQZ1ede9NyLLr3oSy9aFRGfRWk8xwDx3fqK6h_vipHz</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Utyaganova, V. R.</creator><creator>Filippov, Andrey V.</creator><creator>Shamarin, N. N.</creator><creator>Vorontsov, A. V.</creator><creator>Savchenko, N. L.</creator><creator>Fortuna, S. V.</creator><creator>Gurianov, D. A.</creator><creator>Chumaevskii, A. V.</creator><creator>Rubtsov, V. E.</creator><creator>Tarasov, S. Yu</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0487-8382</orcidid></search><sort><creationdate>20200601</creationdate><title>Controlling the porosity using exponential decay heat input regimes during electron beam wire-feed additive manufacturing of Al-Mg alloy</title><author>Utyaganova, V. R. ; Filippov, Andrey V. ; Shamarin, N. N. ; Vorontsov, A. V. ; Savchenko, N. L. ; Fortuna, S. V. ; Gurianov, D. A. ; Chumaevskii, A. V. ; Rubtsov, V. E. ; Tarasov, S. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-e5919caf7d120096df9348a5fcd91c77c01de8b604d516baa3bc542334c4d4363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additive manufacturing</topic><topic>Aluminum base alloys</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cooling rate</topic><topic>Electron beams</topic><topic>Engineering</topic><topic>Evaporation</topic><topic>Industrial and Production Engineering</topic><topic>Light metal alloys</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Porosity</topic><topic>Production methods</topic><topic>Shrinkage</topic><topic>Tensile tests</topic><topic>Ultimate tensile strength</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Utyaganova, V. R.</creatorcontrib><creatorcontrib>Filippov, Andrey V.</creatorcontrib><creatorcontrib>Shamarin, N. N.</creatorcontrib><creatorcontrib>Vorontsov, A. V.</creatorcontrib><creatorcontrib>Savchenko, N. L.</creatorcontrib><creatorcontrib>Fortuna, S. V.</creatorcontrib><creatorcontrib>Gurianov, D. A.</creatorcontrib><creatorcontrib>Chumaevskii, A. V.</creatorcontrib><creatorcontrib>Rubtsov, V. E.</creatorcontrib><creatorcontrib>Tarasov, S. Yu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Utyaganova, V. R.</au><au>Filippov, Andrey V.</au><au>Shamarin, N. N.</au><au>Vorontsov, A. V.</au><au>Savchenko, N. L.</au><au>Fortuna, S. V.</au><au>Gurianov, D. A.</au><au>Chumaevskii, A. V.</au><au>Rubtsov, V. E.</au><au>Tarasov, S. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the porosity using exponential decay heat input regimes during electron beam wire-feed additive manufacturing of Al-Mg alloy</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>108</volume><issue>9-10</issue><spage>2823</spage><epage>2838</epage><pages>2823-2838</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Electron beam wire-feed additive manufacturing is given less attention in research community compared with other additive manufacturing methods, despite it allows higher deposition rate and less porosity. However, both gas and shrinking porosity are still met even with this method especially if applied to light alloys. The excess heat input may be the reason for evaporation of volatile metals, and forming the gas pores especially in the top layers of the built sample where cooling rate is reduced. Therefore, exponential decay heat input was used to grow AA5356 samples. Microstructural and mechanical characterization of the samples obtained at mean low, medium, and high heat input levels was carried out. An optimal heat input gradient was determined which allowed growing a defect-free metal in the bottom part of the sample and forcing out the shrinkage cavities to the top part. Shrinkage and gas pore structure formation was analyzed as a function of the heat input gradient and along the building direction. Gas pores resulted at two higher heat input regimes as a result of evaporation of magnesium as supported by the results of EDS and XRD. Tensile test showed the ultimate strength of the defect-free part equal to that of the base AA5356.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-020-05539-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0487-8382</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2020-06, Vol.108 (9-10), p.2823-2838
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490893247
source SpringerLink Journals - AutoHoldings
subjects Additive manufacturing
Aluminum base alloys
CAE) and Design
Computer-Aided Engineering (CAD
Cooling rate
Electron beams
Engineering
Evaporation
Industrial and Production Engineering
Light metal alloys
Mechanical Engineering
Mechanical properties
Media Management
Original Article
Porosity
Production methods
Shrinkage
Tensile tests
Ultimate tensile strength
Wire
title Controlling the porosity using exponential decay heat input regimes during electron beam wire-feed additive manufacturing of Al-Mg alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A33%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20porosity%20using%20exponential%20decay%20heat%20input%20regimes%20during%20electron%20beam%20wire-feed%20additive%20manufacturing%20of%20Al-Mg%20alloy&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Utyaganova,%20V.%20R.&rft.date=2020-06-01&rft.volume=108&rft.issue=9-10&rft.spage=2823&rft.epage=2838&rft.pages=2823-2838&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-020-05539-9&rft_dat=%3Cproquest_cross%3E2490893247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417701520&rft_id=info:pmid/&rfr_iscdi=true