Optimal adaptive Kanban-type production control

The field of adaptive Kanban-type control policies has attracted considerable attention in the research community over the years. Numerous heuristic control policies have been proposed in the literature for dynamically adjusting the number of kanban cards in a manufacturing system. However, to the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2018-07, Vol.97 (5-8), p.2887-2905
Hauptverfasser: Xanthopoulos, A. S., Ioannidis, S., Koulouriotis, D. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2905
container_issue 5-8
container_start_page 2887
container_title International journal of advanced manufacturing technology
container_volume 97
creator Xanthopoulos, A. S.
Ioannidis, S.
Koulouriotis, D. E.
description The field of adaptive Kanban-type control policies has attracted considerable attention in the research community over the years. Numerous heuristic control policies have been proposed in the literature for dynamically adjusting the number of kanban cards in a manufacturing system. However, to the authors’ knowledge, none of these approaches comes with guarantees regarding their optimality. In this research, we derive optimal adaptive Kanban-type policies using a dynamic programming approach. We investigate a single-stage system that consists of parallel machines. The demand for end-items is a Markov-modulated Poisson process, meaning that it is stochastic and periodically varying, due to seasonal fluctuations. The situation where the demand follows the Poisson distribution is also examined as a special case. The goal is to minimize the average total cost that consists of holding cost and backorder cost components. The properties of the optimal policy are investigated numerically. This analysis gives strong indications that existing, adaptive heuristics can never be optimal for seasonal demand. An extensive comparative evaluation of the optimal, the standard Kanban, and three adaptive heuristic policies is conducted. The experimental results indicate that the performance of all heuristics deteriorates as the variability of the demand increases. The Adaptive Kanban policy is found to largely outperform all other heuristics and to be a good approximation of the optimal adaptive policy in most cases.
doi_str_mv 10.1007/s00170-018-2110-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490891225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262604508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-af3c042a7be5dd4547ceaec5c5e7bdcfae86cea9a65f4f8ff40ed06589a4fdce3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuC5-hMNl97lOIXFnrRc0jzIS11d022wv57U1bwZE8zDM87MzyEXCPcIoC6ywCogAJqyhCBjidkhryuaQ0oTskMmNS0VlKfk4uct4WWKPWM3K36YfNpd5X1tnTfoXq17dq2dBj7UPWp83s3bLq2cl07pG53Sc6i3eVw9Vvn5P3x4W3xTJerp5fF_ZI6zmCgNtYOOLNqHYT3XHDlgg1OOBHU2rtog5Zl0lgpIo86Rg7BgxS6sTx6F-o5uZn2lhe-9iEPZtvtU1tOGsYb0A0yJo5STDIJXIA-SoFErRhHViicKJe6nFOIpk_FTBoNgjk4NpNjUxybg2MzlgybMrmw7UdIf5v_D_0AAZl-jA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262604508</pqid></control><display><type>article</type><title>Optimal adaptive Kanban-type production control</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xanthopoulos, A. S. ; Ioannidis, S. ; Koulouriotis, D. E.</creator><creatorcontrib>Xanthopoulos, A. S. ; Ioannidis, S. ; Koulouriotis, D. E.</creatorcontrib><description>The field of adaptive Kanban-type control policies has attracted considerable attention in the research community over the years. Numerous heuristic control policies have been proposed in the literature for dynamically adjusting the number of kanban cards in a manufacturing system. However, to the authors’ knowledge, none of these approaches comes with guarantees regarding their optimality. In this research, we derive optimal adaptive Kanban-type policies using a dynamic programming approach. We investigate a single-stage system that consists of parallel machines. The demand for end-items is a Markov-modulated Poisson process, meaning that it is stochastic and periodically varying, due to seasonal fluctuations. The situation where the demand follows the Poisson distribution is also examined as a special case. The goal is to minimize the average total cost that consists of holding cost and backorder cost components. The properties of the optimal policy are investigated numerically. This analysis gives strong indications that existing, adaptive heuristics can never be optimal for seasonal demand. An extensive comparative evaluation of the optimal, the standard Kanban, and three adaptive heuristic policies is conducted. The experimental results indicate that the performance of all heuristics deteriorates as the variability of the demand increases. The Adaptive Kanban policy is found to largely outperform all other heuristics and to be a good approximation of the optimal adaptive policy in most cases.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-018-2110-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Adaptive control ; CAE) and Design ; Computer-Aided Engineering (CAD ; Demand ; Dynamic programming ; Engineering ; Heuristic ; Industrial and Production Engineering ; Kanbans ; Markov processes ; Mechanical Engineering ; Media Management ; Optimization ; Original Article ; Poisson density functions ; Poisson distribution ; Policies ; Production controls ; Seasonal variations ; Statistical analysis</subject><ispartof>International journal of advanced manufacturing technology, 2018-07, Vol.97 (5-8), p.2887-2905</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-af3c042a7be5dd4547ceaec5c5e7bdcfae86cea9a65f4f8ff40ed06589a4fdce3</citedby><cites>FETCH-LOGICAL-c420t-af3c042a7be5dd4547ceaec5c5e7bdcfae86cea9a65f4f8ff40ed06589a4fdce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-018-2110-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-018-2110-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xanthopoulos, A. S.</creatorcontrib><creatorcontrib>Ioannidis, S.</creatorcontrib><creatorcontrib>Koulouriotis, D. E.</creatorcontrib><title>Optimal adaptive Kanban-type production control</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The field of adaptive Kanban-type control policies has attracted considerable attention in the research community over the years. Numerous heuristic control policies have been proposed in the literature for dynamically adjusting the number of kanban cards in a manufacturing system. However, to the authors’ knowledge, none of these approaches comes with guarantees regarding their optimality. In this research, we derive optimal adaptive Kanban-type policies using a dynamic programming approach. We investigate a single-stage system that consists of parallel machines. The demand for end-items is a Markov-modulated Poisson process, meaning that it is stochastic and periodically varying, due to seasonal fluctuations. The situation where the demand follows the Poisson distribution is also examined as a special case. The goal is to minimize the average total cost that consists of holding cost and backorder cost components. The properties of the optimal policy are investigated numerically. This analysis gives strong indications that existing, adaptive heuristics can never be optimal for seasonal demand. An extensive comparative evaluation of the optimal, the standard Kanban, and three adaptive heuristic policies is conducted. The experimental results indicate that the performance of all heuristics deteriorates as the variability of the demand increases. The Adaptive Kanban policy is found to largely outperform all other heuristics and to be a good approximation of the optimal adaptive policy in most cases.</description><subject>Adaptive control</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Demand</subject><subject>Dynamic programming</subject><subject>Engineering</subject><subject>Heuristic</subject><subject>Industrial and Production Engineering</subject><subject>Kanbans</subject><subject>Markov processes</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Poisson density functions</subject><subject>Poisson distribution</subject><subject>Policies</subject><subject>Production controls</subject><subject>Seasonal variations</subject><subject>Statistical analysis</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_wNuC5-hMNl97lOIXFnrRc0jzIS11d022wv57U1bwZE8zDM87MzyEXCPcIoC6ywCogAJqyhCBjidkhryuaQ0oTskMmNS0VlKfk4uct4WWKPWM3K36YfNpd5X1tnTfoXq17dq2dBj7UPWp83s3bLq2cl07pG53Sc6i3eVw9Vvn5P3x4W3xTJerp5fF_ZI6zmCgNtYOOLNqHYT3XHDlgg1OOBHU2rtog5Zl0lgpIo86Rg7BgxS6sTx6F-o5uZn2lhe-9iEPZtvtU1tOGsYb0A0yJo5STDIJXIA-SoFErRhHViicKJe6nFOIpk_FTBoNgjk4NpNjUxybg2MzlgybMrmw7UdIf5v_D_0AAZl-jA</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Xanthopoulos, A. S.</creator><creator>Ioannidis, S.</creator><creator>Koulouriotis, D. E.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180701</creationdate><title>Optimal adaptive Kanban-type production control</title><author>Xanthopoulos, A. S. ; Ioannidis, S. ; Koulouriotis, D. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-af3c042a7be5dd4547ceaec5c5e7bdcfae86cea9a65f4f8ff40ed06589a4fdce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive control</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Demand</topic><topic>Dynamic programming</topic><topic>Engineering</topic><topic>Heuristic</topic><topic>Industrial and Production Engineering</topic><topic>Kanbans</topic><topic>Markov processes</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Poisson density functions</topic><topic>Poisson distribution</topic><topic>Policies</topic><topic>Production controls</topic><topic>Seasonal variations</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xanthopoulos, A. S.</creatorcontrib><creatorcontrib>Ioannidis, S.</creatorcontrib><creatorcontrib>Koulouriotis, D. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xanthopoulos, A. S.</au><au>Ioannidis, S.</au><au>Koulouriotis, D. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal adaptive Kanban-type production control</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>97</volume><issue>5-8</issue><spage>2887</spage><epage>2905</epage><pages>2887-2905</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The field of adaptive Kanban-type control policies has attracted considerable attention in the research community over the years. Numerous heuristic control policies have been proposed in the literature for dynamically adjusting the number of kanban cards in a manufacturing system. However, to the authors’ knowledge, none of these approaches comes with guarantees regarding their optimality. In this research, we derive optimal adaptive Kanban-type policies using a dynamic programming approach. We investigate a single-stage system that consists of parallel machines. The demand for end-items is a Markov-modulated Poisson process, meaning that it is stochastic and periodically varying, due to seasonal fluctuations. The situation where the demand follows the Poisson distribution is also examined as a special case. The goal is to minimize the average total cost that consists of holding cost and backorder cost components. The properties of the optimal policy are investigated numerically. This analysis gives strong indications that existing, adaptive heuristics can never be optimal for seasonal demand. An extensive comparative evaluation of the optimal, the standard Kanban, and three adaptive heuristic policies is conducted. The experimental results indicate that the performance of all heuristics deteriorates as the variability of the demand increases. The Adaptive Kanban policy is found to largely outperform all other heuristics and to be a good approximation of the optimal adaptive policy in most cases.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-018-2110-y</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2018-07, Vol.97 (5-8), p.2887-2905
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490891225
source SpringerLink Journals - AutoHoldings
subjects Adaptive control
CAE) and Design
Computer-Aided Engineering (CAD
Demand
Dynamic programming
Engineering
Heuristic
Industrial and Production Engineering
Kanbans
Markov processes
Mechanical Engineering
Media Management
Optimization
Original Article
Poisson density functions
Poisson distribution
Policies
Production controls
Seasonal variations
Statistical analysis
title Optimal adaptive Kanban-type production control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20adaptive%20Kanban-type%20production%20control&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Xanthopoulos,%20A.%20S.&rft.date=2018-07-01&rft.volume=97&rft.issue=5-8&rft.spage=2887&rft.epage=2905&rft.pages=2887-2905&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-018-2110-y&rft_dat=%3Cproquest_cross%3E2262604508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262604508&rft_id=info:pmid/&rfr_iscdi=true