Mechanistic force model for machining process—theory and application of Bayesian inference
This work discusses the Bayesian parameter inference method for a mechanistic force model for machining. Bayesian inference methods have gained popularity recently owing to their intuitiveness and ease with which empirical knowledge may be combined with experimental data considering the uncertainty....
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2017-08, Vol.91 (9-12), p.3673-3682 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3682 |
---|---|
container_issue | 9-12 |
container_start_page | 3673 |
container_title | International journal of advanced manufacturing technology |
container_volume | 91 |
creator | Mehta, Parikshit Kuttolamadom, Mathew Mears, Laine |
description | This work discusses the Bayesian parameter inference method for a mechanistic force model for machining. Bayesian inference methods have gained popularity recently owing to their intuitiveness and ease with which empirical knowledge may be combined with experimental data considering the uncertainty. The first part of the paper discusses Bayesian parameter inference and Markov Chain Monte Carlo (MCMC) methods. MCMC method effectiveness has been further analyzed by (1) changing the number of particles in MCMC estimation and (2) changing the MCMC move step size. The second part of the paper discusses two example applications as nonlinear mechanistic force model coefficient identification. The Bayesian inference scheme performs prediction of the cutting force coefficients from the training data. Using these coefficients and input parameters to the model, the cutting force is predicted. This prediction is validated using experimental data, and it is demonstrated that with very few parameter updates the predicted force converges with the measured cutting force. The paper is concluded with the discussion of future work. |
doi_str_mv | 10.1007/s00170-017-0064-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490885045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490885045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-8258f56b936888abeecb81f8106be906f242ac8cbfb41ff5aa1dd7ccaec09d5a3</originalsourceid><addsrcrecordid>eNp9kb1OwzAUhS0EEqXwAGyWmAPXduI4I1T8SUUssCFZjnPdumqdYqdDNx6CJ-RJSBQGFljOvcN3zr3SIeScwSUDKK8SACsh6yUDkHkGB2TCciEyAaw4JBPgUmWilOqYnKS06mnJpJqQtye0SxN86rylro0W6aZtcD3sdGPs0gcfFnQbW4spfX18dkts456a0FCz3a69NZ1vA20dvTF7TN4E6oPDiMHiKTlyZp3w7GdOyevd7cvsIZs_3z_OrueZFSXvMsUL5QpZV0IqpUyNaGvFnGIga6xAOp5zY5WtXZ0z5wpjWNOU1hq0UDWFEVNyMeb2b77vMHV61e5i6E9qnlegVAF58S_FJeci5xX7j2IVL7jgTAwUGykb25QiOr2NfmPiXjPQQyF6LET3oodCNPQePnpSz4YFxl_Jf5q-AeS-jpc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262234291</pqid></control><display><type>article</type><title>Mechanistic force model for machining process—theory and application of Bayesian inference</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mehta, Parikshit ; Kuttolamadom, Mathew ; Mears, Laine</creator><creatorcontrib>Mehta, Parikshit ; Kuttolamadom, Mathew ; Mears, Laine</creatorcontrib><description>This work discusses the Bayesian parameter inference method for a mechanistic force model for machining. Bayesian inference methods have gained popularity recently owing to their intuitiveness and ease with which empirical knowledge may be combined with experimental data considering the uncertainty. The first part of the paper discusses Bayesian parameter inference and Markov Chain Monte Carlo (MCMC) methods. MCMC method effectiveness has been further analyzed by (1) changing the number of particles in MCMC estimation and (2) changing the MCMC move step size. The second part of the paper discusses two example applications as nonlinear mechanistic force model coefficient identification. The Bayesian inference scheme performs prediction of the cutting force coefficients from the training data. Using these coefficients and input parameters to the model, the cutting force is predicted. This prediction is validated using experimental data, and it is demonstrated that with very few parameter updates the predicted force converges with the measured cutting force. The paper is concluded with the discussion of future work.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-017-0064-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Bayesian analysis ; CAE) and Design ; Coefficients ; Computer simulation ; Computer-Aided Engineering (CAD ; Cutting force ; Cutting forces ; Cutting parameters ; Empirical analysis ; Engineering ; Industrial and Production Engineering ; Machining ; Markov analysis ; Markov chains ; Mathematical models ; Mechanical Engineering ; Media Management ; Monte Carlo simulation ; Original Article ; Parameter uncertainty ; Predictions ; Statistical inference</subject><ispartof>International journal of advanced manufacturing technology, 2017-08, Vol.91 (9-12), p.3673-3682</ispartof><rights>Springer-Verlag London 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2017). All Rights Reserved.</rights><rights>Springer-Verlag London 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-8258f56b936888abeecb81f8106be906f242ac8cbfb41ff5aa1dd7ccaec09d5a3</citedby><cites>FETCH-LOGICAL-c372t-8258f56b936888abeecb81f8106be906f242ac8cbfb41ff5aa1dd7ccaec09d5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-017-0064-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-017-0064-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Mehta, Parikshit</creatorcontrib><creatorcontrib>Kuttolamadom, Mathew</creatorcontrib><creatorcontrib>Mears, Laine</creatorcontrib><title>Mechanistic force model for machining process—theory and application of Bayesian inference</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>This work discusses the Bayesian parameter inference method for a mechanistic force model for machining. Bayesian inference methods have gained popularity recently owing to their intuitiveness and ease with which empirical knowledge may be combined with experimental data considering the uncertainty. The first part of the paper discusses Bayesian parameter inference and Markov Chain Monte Carlo (MCMC) methods. MCMC method effectiveness has been further analyzed by (1) changing the number of particles in MCMC estimation and (2) changing the MCMC move step size. The second part of the paper discusses two example applications as nonlinear mechanistic force model coefficient identification. The Bayesian inference scheme performs prediction of the cutting force coefficients from the training data. Using these coefficients and input parameters to the model, the cutting force is predicted. This prediction is validated using experimental data, and it is demonstrated that with very few parameter updates the predicted force converges with the measured cutting force. The paper is concluded with the discussion of future work.</description><subject>Bayesian analysis</subject><subject>CAE) and Design</subject><subject>Coefficients</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cutting force</subject><subject>Cutting forces</subject><subject>Cutting parameters</subject><subject>Empirical analysis</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Machining</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Monte Carlo simulation</subject><subject>Original Article</subject><subject>Parameter uncertainty</subject><subject>Predictions</subject><subject>Statistical inference</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kb1OwzAUhS0EEqXwAGyWmAPXduI4I1T8SUUssCFZjnPdumqdYqdDNx6CJ-RJSBQGFljOvcN3zr3SIeScwSUDKK8SACsh6yUDkHkGB2TCciEyAaw4JBPgUmWilOqYnKS06mnJpJqQtye0SxN86rylro0W6aZtcD3sdGPs0gcfFnQbW4spfX18dkts456a0FCz3a69NZ1vA20dvTF7TN4E6oPDiMHiKTlyZp3w7GdOyevd7cvsIZs_3z_OrueZFSXvMsUL5QpZV0IqpUyNaGvFnGIga6xAOp5zY5WtXZ0z5wpjWNOU1hq0UDWFEVNyMeb2b77vMHV61e5i6E9qnlegVAF58S_FJeci5xX7j2IVL7jgTAwUGykb25QiOr2NfmPiXjPQQyF6LET3oodCNPQePnpSz4YFxl_Jf5q-AeS-jpc</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Mehta, Parikshit</creator><creator>Kuttolamadom, Mathew</creator><creator>Mears, Laine</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170801</creationdate><title>Mechanistic force model for machining process—theory and application of Bayesian inference</title><author>Mehta, Parikshit ; Kuttolamadom, Mathew ; Mears, Laine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-8258f56b936888abeecb81f8106be906f242ac8cbfb41ff5aa1dd7ccaec09d5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayesian analysis</topic><topic>CAE) and Design</topic><topic>Coefficients</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cutting force</topic><topic>Cutting forces</topic><topic>Cutting parameters</topic><topic>Empirical analysis</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Machining</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Monte Carlo simulation</topic><topic>Original Article</topic><topic>Parameter uncertainty</topic><topic>Predictions</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehta, Parikshit</creatorcontrib><creatorcontrib>Kuttolamadom, Mathew</creatorcontrib><creatorcontrib>Mears, Laine</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehta, Parikshit</au><au>Kuttolamadom, Mathew</au><au>Mears, Laine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic force model for machining process—theory and application of Bayesian inference</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>91</volume><issue>9-12</issue><spage>3673</spage><epage>3682</epage><pages>3673-3682</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>This work discusses the Bayesian parameter inference method for a mechanistic force model for machining. Bayesian inference methods have gained popularity recently owing to their intuitiveness and ease with which empirical knowledge may be combined with experimental data considering the uncertainty. The first part of the paper discusses Bayesian parameter inference and Markov Chain Monte Carlo (MCMC) methods. MCMC method effectiveness has been further analyzed by (1) changing the number of particles in MCMC estimation and (2) changing the MCMC move step size. The second part of the paper discusses two example applications as nonlinear mechanistic force model coefficient identification. The Bayesian inference scheme performs prediction of the cutting force coefficients from the training data. Using these coefficients and input parameters to the model, the cutting force is predicted. This prediction is validated using experimental data, and it is demonstrated that with very few parameter updates the predicted force converges with the measured cutting force. The paper is concluded with the discussion of future work.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-017-0064-0</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2017-08, Vol.91 (9-12), p.3673-3682 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2490885045 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bayesian analysis CAE) and Design Coefficients Computer simulation Computer-Aided Engineering (CAD Cutting force Cutting forces Cutting parameters Empirical analysis Engineering Industrial and Production Engineering Machining Markov analysis Markov chains Mathematical models Mechanical Engineering Media Management Monte Carlo simulation Original Article Parameter uncertainty Predictions Statistical inference |
title | Mechanistic force model for machining process—theory and application of Bayesian inference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20force%20model%20for%20machining%20process%E2%80%94theory%20and%20application%20of%20Bayesian%20inference&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Mehta,%20Parikshit&rft.date=2017-08-01&rft.volume=91&rft.issue=9-12&rft.spage=3673&rft.epage=3682&rft.pages=3673-3682&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-017-0064-0&rft_dat=%3Cproquest_cross%3E2490885045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262234291&rft_id=info:pmid/&rfr_iscdi=true |