Tool performance evaluation of friction stir welded shipbuilding grade DH36 steel butt joints
Tool wear is a key issue in the friction stir welding of high strength materials like steel-, titanium-, and nickel-based alloys. The wear assessment is an important aspect for developing or modifying the existing tool materials and tool designs. In this study, two different grades of tungsten carbi...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2019-08, Vol.103 (5-8), p.1989-2005 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2005 |
---|---|
container_issue | 5-8 |
container_start_page | 1989 |
container_title | International journal of advanced manufacturing technology |
container_volume | 103 |
creator | Tiwari, Avinish Pankaj, Pardeep Biswas, Pankaj Kore, S. D. Rao, A. Gourav |
description | Tool wear is a key issue in the friction stir welding of high strength materials like steel-, titanium-, and nickel-based alloys. The wear assessment is an important aspect for developing or modifying the existing tool materials and tool designs. In this study, two different grades of tungsten carbide tools, i.e., tool A (WC-6 wt.% Co) and tool B (WC-10 wt.% Co), were used to join DH36 steel plates. Pre- and post-welded tungsten carbide tools were characterized using different techniques like microstructure analysis, weight measurement, profile measurement, and X-ray diffraction phase analysis. It was observed that the degradation mechanisms strongly depend on the tool material composition and welding conditions. During this study, tool A was degraded by intergranular failure caused by the separations of tungsten carbide grains which promoted further cracks inside the tool. Different degradation mechanisms such as adhesion, abrasion, crack initiation, diffusion, and oxidation were observed for tool B. Progressive wear in tool B was strongly affected by the process temperatures. Minimum wear was observed at low rotational speed and high traverse speed. |
doi_str_mv | 10.1007/s00170-019-03618-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490884319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2260521470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-1c52ab94fdcd0b0671e959cb2ba0e96866f9ec0a94bb5715e0c51c88f95f2bcf3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5gsMRue48SxR1Q-ilSJpYzIsh27pErjYCcg_j1pg8TW6d3h3Pukg9A1hVsKUN4lAFoCASoJME4FgRM0ozljhAEtTtEMMi4IK7k4RxcpbUecUy5m6H0dQoM7F32IO91ah92Xbgbd16HFwWMfa3vIqa8j_nZN5SqcPurODHVT1e0Gb6KuHH5YMj4yzjXYDH2Pt6Fu-3SJzrxukrv6u3P09vS4XizJ6vX5ZXG_IjanrCfUFpk2MveVrcAAL6mThbQmMxqc5IJzL50FLXNjipIWDmxBrRBeFj4z1rM5upl2uxg-B5d6tQ1DbMeXKsslCJEzKo9SGYcio3kJI5VNlI0hpei86mK90_FHUVB72WqSrUbZ6iBb7UtsKqURbjcu_k8faf0CRoKCDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260521470</pqid></control><display><type>article</type><title>Tool performance evaluation of friction stir welded shipbuilding grade DH36 steel butt joints</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tiwari, Avinish ; Pankaj, Pardeep ; Biswas, Pankaj ; Kore, S. D. ; Rao, A. Gourav</creator><creatorcontrib>Tiwari, Avinish ; Pankaj, Pardeep ; Biswas, Pankaj ; Kore, S. D. ; Rao, A. Gourav</creatorcontrib><description>Tool wear is a key issue in the friction stir welding of high strength materials like steel-, titanium-, and nickel-based alloys. The wear assessment is an important aspect for developing or modifying the existing tool materials and tool designs. In this study, two different grades of tungsten carbide tools, i.e., tool A (WC-6 wt.% Co) and tool B (WC-10 wt.% Co), were used to join DH36 steel plates. Pre- and post-welded tungsten carbide tools were characterized using different techniques like microstructure analysis, weight measurement, profile measurement, and X-ray diffraction phase analysis. It was observed that the degradation mechanisms strongly depend on the tool material composition and welding conditions. During this study, tool A was degraded by intergranular failure caused by the separations of tungsten carbide grains which promoted further cracks inside the tool. Different degradation mechanisms such as adhesion, abrasion, crack initiation, diffusion, and oxidation were observed for tool B. Progressive wear in tool B was strongly affected by the process temperatures. Minimum wear was observed at low rotational speed and high traverse speed.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-019-03618-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Abrasion ; Alloy development ; Butt joints ; Butt welding ; CAE) and Design ; Carbide tools ; Computer-Aided Engineering (CAD ; Crack initiation ; Cracks ; Degradation ; Engineering ; Friction stir welding ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Nickel ; Nickel base alloys ; Original Article ; Oxidation ; Performance evaluation ; Profile measurement ; Shipbuilding ; Slopes ; Steel plates ; Structural steels ; Titanium base alloys ; Tool wear ; Tungsten carbide ; Weight measurement</subject><ispartof>International journal of advanced manufacturing technology, 2019-08, Vol.103 (5-8), p.1989-2005</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-1c52ab94fdcd0b0671e959cb2ba0e96866f9ec0a94bb5715e0c51c88f95f2bcf3</citedby><cites>FETCH-LOGICAL-c413t-1c52ab94fdcd0b0671e959cb2ba0e96866f9ec0a94bb5715e0c51c88f95f2bcf3</cites><orcidid>0000-0003-1820-0900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-019-03618-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-019-03618-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Tiwari, Avinish</creatorcontrib><creatorcontrib>Pankaj, Pardeep</creatorcontrib><creatorcontrib>Biswas, Pankaj</creatorcontrib><creatorcontrib>Kore, S. D.</creatorcontrib><creatorcontrib>Rao, A. Gourav</creatorcontrib><title>Tool performance evaluation of friction stir welded shipbuilding grade DH36 steel butt joints</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Tool wear is a key issue in the friction stir welding of high strength materials like steel-, titanium-, and nickel-based alloys. The wear assessment is an important aspect for developing or modifying the existing tool materials and tool designs. In this study, two different grades of tungsten carbide tools, i.e., tool A (WC-6 wt.% Co) and tool B (WC-10 wt.% Co), were used to join DH36 steel plates. Pre- and post-welded tungsten carbide tools were characterized using different techniques like microstructure analysis, weight measurement, profile measurement, and X-ray diffraction phase analysis. It was observed that the degradation mechanisms strongly depend on the tool material composition and welding conditions. During this study, tool A was degraded by intergranular failure caused by the separations of tungsten carbide grains which promoted further cracks inside the tool. Different degradation mechanisms such as adhesion, abrasion, crack initiation, diffusion, and oxidation were observed for tool B. Progressive wear in tool B was strongly affected by the process temperatures. Minimum wear was observed at low rotational speed and high traverse speed.</description><subject>Abrasion</subject><subject>Alloy development</subject><subject>Butt joints</subject><subject>Butt welding</subject><subject>CAE) and Design</subject><subject>Carbide tools</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Crack initiation</subject><subject>Cracks</subject><subject>Degradation</subject><subject>Engineering</subject><subject>Friction stir welding</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Nickel</subject><subject>Nickel base alloys</subject><subject>Original Article</subject><subject>Oxidation</subject><subject>Performance evaluation</subject><subject>Profile measurement</subject><subject>Shipbuilding</subject><subject>Slopes</subject><subject>Steel plates</subject><subject>Structural steels</subject><subject>Titanium base alloys</subject><subject>Tool wear</subject><subject>Tungsten carbide</subject><subject>Weight measurement</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kD1PwzAURS0EEqXwB5gsMRue48SxR1Q-ilSJpYzIsh27pErjYCcg_j1pg8TW6d3h3Pukg9A1hVsKUN4lAFoCASoJME4FgRM0ozljhAEtTtEMMi4IK7k4RxcpbUecUy5m6H0dQoM7F32IO91ah92Xbgbd16HFwWMfa3vIqa8j_nZN5SqcPurODHVT1e0Gb6KuHH5YMj4yzjXYDH2Pt6Fu-3SJzrxukrv6u3P09vS4XizJ6vX5ZXG_IjanrCfUFpk2MveVrcAAL6mThbQmMxqc5IJzL50FLXNjipIWDmxBrRBeFj4z1rM5upl2uxg-B5d6tQ1DbMeXKsslCJEzKo9SGYcio3kJI5VNlI0hpei86mK90_FHUVB72WqSrUbZ6iBb7UtsKqURbjcu_k8faf0CRoKCDQ</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Tiwari, Avinish</creator><creator>Pankaj, Pardeep</creator><creator>Biswas, Pankaj</creator><creator>Kore, S. D.</creator><creator>Rao, A. Gourav</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1820-0900</orcidid></search><sort><creationdate>20190801</creationdate><title>Tool performance evaluation of friction stir welded shipbuilding grade DH36 steel butt joints</title><author>Tiwari, Avinish ; Pankaj, Pardeep ; Biswas, Pankaj ; Kore, S. D. ; Rao, A. Gourav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-1c52ab94fdcd0b0671e959cb2ba0e96866f9ec0a94bb5715e0c51c88f95f2bcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abrasion</topic><topic>Alloy development</topic><topic>Butt joints</topic><topic>Butt welding</topic><topic>CAE) and Design</topic><topic>Carbide tools</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Crack initiation</topic><topic>Cracks</topic><topic>Degradation</topic><topic>Engineering</topic><topic>Friction stir welding</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Nickel</topic><topic>Nickel base alloys</topic><topic>Original Article</topic><topic>Oxidation</topic><topic>Performance evaluation</topic><topic>Profile measurement</topic><topic>Shipbuilding</topic><topic>Slopes</topic><topic>Steel plates</topic><topic>Structural steels</topic><topic>Titanium base alloys</topic><topic>Tool wear</topic><topic>Tungsten carbide</topic><topic>Weight measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiwari, Avinish</creatorcontrib><creatorcontrib>Pankaj, Pardeep</creatorcontrib><creatorcontrib>Biswas, Pankaj</creatorcontrib><creatorcontrib>Kore, S. D.</creatorcontrib><creatorcontrib>Rao, A. Gourav</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiwari, Avinish</au><au>Pankaj, Pardeep</au><au>Biswas, Pankaj</au><au>Kore, S. D.</au><au>Rao, A. Gourav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tool performance evaluation of friction stir welded shipbuilding grade DH36 steel butt joints</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>103</volume><issue>5-8</issue><spage>1989</spage><epage>2005</epage><pages>1989-2005</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Tool wear is a key issue in the friction stir welding of high strength materials like steel-, titanium-, and nickel-based alloys. The wear assessment is an important aspect for developing or modifying the existing tool materials and tool designs. In this study, two different grades of tungsten carbide tools, i.e., tool A (WC-6 wt.% Co) and tool B (WC-10 wt.% Co), were used to join DH36 steel plates. Pre- and post-welded tungsten carbide tools were characterized using different techniques like microstructure analysis, weight measurement, profile measurement, and X-ray diffraction phase analysis. It was observed that the degradation mechanisms strongly depend on the tool material composition and welding conditions. During this study, tool A was degraded by intergranular failure caused by the separations of tungsten carbide grains which promoted further cracks inside the tool. Different degradation mechanisms such as adhesion, abrasion, crack initiation, diffusion, and oxidation were observed for tool B. Progressive wear in tool B was strongly affected by the process temperatures. Minimum wear was observed at low rotational speed and high traverse speed.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-019-03618-0</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1820-0900</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2019-08, Vol.103 (5-8), p.1989-2005 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2490884319 |
source | SpringerLink Journals - AutoHoldings |
subjects | Abrasion Alloy development Butt joints Butt welding CAE) and Design Carbide tools Computer-Aided Engineering (CAD Crack initiation Cracks Degradation Engineering Friction stir welding Industrial and Production Engineering Mechanical Engineering Media Management Nickel Nickel base alloys Original Article Oxidation Performance evaluation Profile measurement Shipbuilding Slopes Steel plates Structural steels Titanium base alloys Tool wear Tungsten carbide Weight measurement |
title | Tool performance evaluation of friction stir welded shipbuilding grade DH36 steel butt joints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tool%20performance%20evaluation%20of%20friction%20stir%20welded%20shipbuilding%20grade%20DH36%20steel%20butt%20joints&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Tiwari,%20Avinish&rft.date=2019-08-01&rft.volume=103&rft.issue=5-8&rft.spage=1989&rft.epage=2005&rft.pages=1989-2005&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-019-03618-0&rft_dat=%3Cproquest_cross%3E2260521470%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260521470&rft_id=info:pmid/&rfr_iscdi=true |