Evolution of physical and mechanical characteristics of deposited composite coatings on A356 mild steel

This research investigated the development of Zn-SnO 2 /Zn-Al 2 SiO 5 thin film on A356 mild steel using the electrodeposition technique. The developed coating was attained in 2.0 V for 10 min at a constant current density of 1.5 A/cm 2 . The electroplating process was maintained at a constant stirr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2019-08, Vol.103 (5-8), p.2621-2625
Hauptverfasser: Fayomi, O. S. I., Oluwadare, G. A., Fakehinde, O. B., Akande, I. G., Nwachia, W., Oziegbe, U., Russell, A. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2625
container_issue 5-8
container_start_page 2621
container_title International journal of advanced manufacturing technology
container_volume 103
creator Fayomi, O. S. I.
Oluwadare, G. A.
Fakehinde, O. B.
Akande, I. G.
Nwachia, W.
Oziegbe, U.
Russell, A. J.
description This research investigated the development of Zn-SnO 2 /Zn-Al 2 SiO 5 thin film on A356 mild steel using the electrodeposition technique. The developed coating was attained in 2.0 V for 10 min at a constant current density of 1.5 A/cm 2 . The electroplating process was maintained at a constant stirring rate of 250 rpm, temperature of 45 °C, 10 g of SnO 2 was used for the bath while Al 2 SiO 5 was varied from 5 to 15 g. The surfaces of coated samples were characterized using a scanning electron microscope (SEM). The effects of 3.56% NaCl on the coated and uncoated sample were examined via the potentiodynamic polarization technique, employing Autolab PGSTAT 101 Metrohm potentiostat with NOVA software of version 2.1.2. The outcome of the experiment revealed that the electrodeposited Zn-SnO 2 /Zn-Al 2 SiO 5 exhibits better stability, improved microhardness, excellent microstructural qualities, and outstanding corrosion resistance. The Zn-10SnO 2 -15Al 2 SiO 5 -coated steel exhibits the lowest corrosion rate of 0.0473 mm/year, representing 99.32% reduction in corrosion rate compared to the uncoated sample. Similarly, a corrosion current density (jcorr) value of 20.5 μA/cm 2 was recorded for the uncoated sample which is much greater than the jcorr of the coated samples. This shows that the coating minimizes the exchange of current within the steel. The hardness value of the Zn-10SnO 2 -15Al 2 SiO 5 -coated steel was higher than other coated samples and 17.51% higher than the uncoated steel, and this indicates improvement in the mechanical property of the steel.
doi_str_mv 10.1007/s00170-019-03714-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490881426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490881426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-300e6dbc1b48ab96ad9336af7b43b50e798daf7001d69b7c9bd47afdb8affff03</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9ejNJJPMLEupDyi40XXIa9opM5OapEL_vWlHcGc2OZd85-RyELon8EgAxFMEIAIKIE0BVBBWkAs0I4zSggKpLtEMSl4XVPD6Gt3EuMs4J7yeoc3q2_eH1PkR-xbvt8fYGdVjNVo8OLNV43nMIiiTXOhi6kw8odbtfeySs9j4YZJZqdSNm_w-4gWtOB663uKYnOtv0VWr-ujufu85-nxefSxfi_X7y9tysS4MZSLlbcFxqw3RrFa64co2lHLVCs2orsCJprZ5yutb3mhhGm2ZUK3VtWrzATpHD1PuPvivg4tJ7vwhjPlLWbIG6pqwkv9LlRyqEkR1yionygQfY3Ct3IduUOEoCchT7XKqXeba5bl2SbKJTqaY4XHjwl_0P64foaKGKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260520750</pqid></control><display><type>article</type><title>Evolution of physical and mechanical characteristics of deposited composite coatings on A356 mild steel</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fayomi, O. S. I. ; Oluwadare, G. A. ; Fakehinde, O. B. ; Akande, I. G. ; Nwachia, W. ; Oziegbe, U. ; Russell, A. J.</creator><creatorcontrib>Fayomi, O. S. I. ; Oluwadare, G. A. ; Fakehinde, O. B. ; Akande, I. G. ; Nwachia, W. ; Oziegbe, U. ; Russell, A. J.</creatorcontrib><description>This research investigated the development of Zn-SnO 2 /Zn-Al 2 SiO 5 thin film on A356 mild steel using the electrodeposition technique. The developed coating was attained in 2.0 V for 10 min at a constant current density of 1.5 A/cm 2 . The electroplating process was maintained at a constant stirring rate of 250 rpm, temperature of 45 °C, 10 g of SnO 2 was used for the bath while Al 2 SiO 5 was varied from 5 to 15 g. The surfaces of coated samples were characterized using a scanning electron microscope (SEM). The effects of 3.56% NaCl on the coated and uncoated sample were examined via the potentiodynamic polarization technique, employing Autolab PGSTAT 101 Metrohm potentiostat with NOVA software of version 2.1.2. The outcome of the experiment revealed that the electrodeposited Zn-SnO 2 /Zn-Al 2 SiO 5 exhibits better stability, improved microhardness, excellent microstructural qualities, and outstanding corrosion resistance. The Zn-10SnO 2 -15Al 2 SiO 5 -coated steel exhibits the lowest corrosion rate of 0.0473 mm/year, representing 99.32% reduction in corrosion rate compared to the uncoated sample. Similarly, a corrosion current density (jcorr) value of 20.5 μA/cm 2 was recorded for the uncoated sample which is much greater than the jcorr of the coated samples. This shows that the coating minimizes the exchange of current within the steel. The hardness value of the Zn-10SnO 2 -15Al 2 SiO 5 -coated steel was higher than other coated samples and 17.51% higher than the uncoated steel, and this indicates improvement in the mechanical property of the steel.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-019-03714-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Aluminum silicates ; CAE) and Design ; Coated electrodes ; Computer-Aided Engineering (CAD ; Corrosion ; Corrosion currents ; Corrosion rate ; Corrosion resistance ; Corrosion resistant steels ; Current density ; Electron microscopes ; Electroplating ; Engineering ; Industrial and Production Engineering ; Low carbon steels ; Mechanical Engineering ; Mechanical properties ; Media Management ; Microhardness ; Original Article ; Protective coatings ; Thin films ; Tin dioxide ; Zinc coatings</subject><ispartof>International journal of advanced manufacturing technology, 2019-08, Vol.103 (5-8), p.2621-2625</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-300e6dbc1b48ab96ad9336af7b43b50e798daf7001d69b7c9bd47afdb8affff03</citedby><cites>FETCH-LOGICAL-c347t-300e6dbc1b48ab96ad9336af7b43b50e798daf7001d69b7c9bd47afdb8affff03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-019-03714-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-019-03714-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Fayomi, O. S. I.</creatorcontrib><creatorcontrib>Oluwadare, G. A.</creatorcontrib><creatorcontrib>Fakehinde, O. B.</creatorcontrib><creatorcontrib>Akande, I. G.</creatorcontrib><creatorcontrib>Nwachia, W.</creatorcontrib><creatorcontrib>Oziegbe, U.</creatorcontrib><creatorcontrib>Russell, A. J.</creatorcontrib><title>Evolution of physical and mechanical characteristics of deposited composite coatings on A356 mild steel</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>This research investigated the development of Zn-SnO 2 /Zn-Al 2 SiO 5 thin film on A356 mild steel using the electrodeposition technique. The developed coating was attained in 2.0 V for 10 min at a constant current density of 1.5 A/cm 2 . The electroplating process was maintained at a constant stirring rate of 250 rpm, temperature of 45 °C, 10 g of SnO 2 was used for the bath while Al 2 SiO 5 was varied from 5 to 15 g. The surfaces of coated samples were characterized using a scanning electron microscope (SEM). The effects of 3.56% NaCl on the coated and uncoated sample were examined via the potentiodynamic polarization technique, employing Autolab PGSTAT 101 Metrohm potentiostat with NOVA software of version 2.1.2. The outcome of the experiment revealed that the electrodeposited Zn-SnO 2 /Zn-Al 2 SiO 5 exhibits better stability, improved microhardness, excellent microstructural qualities, and outstanding corrosion resistance. The Zn-10SnO 2 -15Al 2 SiO 5 -coated steel exhibits the lowest corrosion rate of 0.0473 mm/year, representing 99.32% reduction in corrosion rate compared to the uncoated sample. Similarly, a corrosion current density (jcorr) value of 20.5 μA/cm 2 was recorded for the uncoated sample which is much greater than the jcorr of the coated samples. This shows that the coating minimizes the exchange of current within the steel. The hardness value of the Zn-10SnO 2 -15Al 2 SiO 5 -coated steel was higher than other coated samples and 17.51% higher than the uncoated steel, and this indicates improvement in the mechanical property of the steel.</description><subject>Aluminum silicates</subject><subject>CAE) and Design</subject><subject>Coated electrodes</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Corrosion</subject><subject>Corrosion currents</subject><subject>Corrosion rate</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant steels</subject><subject>Current density</subject><subject>Electron microscopes</subject><subject>Electroplating</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Low carbon steels</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Media Management</subject><subject>Microhardness</subject><subject>Original Article</subject><subject>Protective coatings</subject><subject>Thin films</subject><subject>Tin dioxide</subject><subject>Zinc coatings</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9ejNJJPMLEupDyi40XXIa9opM5OapEL_vWlHcGc2OZd85-RyELon8EgAxFMEIAIKIE0BVBBWkAs0I4zSggKpLtEMSl4XVPD6Gt3EuMs4J7yeoc3q2_eH1PkR-xbvt8fYGdVjNVo8OLNV43nMIiiTXOhi6kw8odbtfeySs9j4YZJZqdSNm_w-4gWtOB663uKYnOtv0VWr-ujufu85-nxefSxfi_X7y9tysS4MZSLlbcFxqw3RrFa64co2lHLVCs2orsCJprZ5yutb3mhhGm2ZUK3VtWrzATpHD1PuPvivg4tJ7vwhjPlLWbIG6pqwkv9LlRyqEkR1yionygQfY3Ct3IduUOEoCchT7XKqXeba5bl2SbKJTqaY4XHjwl_0P64foaKGKQ</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Fayomi, O. S. I.</creator><creator>Oluwadare, G. A.</creator><creator>Fakehinde, O. B.</creator><creator>Akande, I. G.</creator><creator>Nwachia, W.</creator><creator>Oziegbe, U.</creator><creator>Russell, A. J.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190801</creationdate><title>Evolution of physical and mechanical characteristics of deposited composite coatings on A356 mild steel</title><author>Fayomi, O. S. I. ; Oluwadare, G. A. ; Fakehinde, O. B. ; Akande, I. G. ; Nwachia, W. ; Oziegbe, U. ; Russell, A. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-300e6dbc1b48ab96ad9336af7b43b50e798daf7001d69b7c9bd47afdb8affff03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum silicates</topic><topic>CAE) and Design</topic><topic>Coated electrodes</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Corrosion</topic><topic>Corrosion currents</topic><topic>Corrosion rate</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant steels</topic><topic>Current density</topic><topic>Electron microscopes</topic><topic>Electroplating</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Low carbon steels</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Media Management</topic><topic>Microhardness</topic><topic>Original Article</topic><topic>Protective coatings</topic><topic>Thin films</topic><topic>Tin dioxide</topic><topic>Zinc coatings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fayomi, O. S. I.</creatorcontrib><creatorcontrib>Oluwadare, G. A.</creatorcontrib><creatorcontrib>Fakehinde, O. B.</creatorcontrib><creatorcontrib>Akande, I. G.</creatorcontrib><creatorcontrib>Nwachia, W.</creatorcontrib><creatorcontrib>Oziegbe, U.</creatorcontrib><creatorcontrib>Russell, A. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fayomi, O. S. I.</au><au>Oluwadare, G. A.</au><au>Fakehinde, O. B.</au><au>Akande, I. G.</au><au>Nwachia, W.</au><au>Oziegbe, U.</au><au>Russell, A. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of physical and mechanical characteristics of deposited composite coatings on A356 mild steel</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>103</volume><issue>5-8</issue><spage>2621</spage><epage>2625</epage><pages>2621-2625</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>This research investigated the development of Zn-SnO 2 /Zn-Al 2 SiO 5 thin film on A356 mild steel using the electrodeposition technique. The developed coating was attained in 2.0 V for 10 min at a constant current density of 1.5 A/cm 2 . The electroplating process was maintained at a constant stirring rate of 250 rpm, temperature of 45 °C, 10 g of SnO 2 was used for the bath while Al 2 SiO 5 was varied from 5 to 15 g. The surfaces of coated samples were characterized using a scanning electron microscope (SEM). The effects of 3.56% NaCl on the coated and uncoated sample were examined via the potentiodynamic polarization technique, employing Autolab PGSTAT 101 Metrohm potentiostat with NOVA software of version 2.1.2. The outcome of the experiment revealed that the electrodeposited Zn-SnO 2 /Zn-Al 2 SiO 5 exhibits better stability, improved microhardness, excellent microstructural qualities, and outstanding corrosion resistance. The Zn-10SnO 2 -15Al 2 SiO 5 -coated steel exhibits the lowest corrosion rate of 0.0473 mm/year, representing 99.32% reduction in corrosion rate compared to the uncoated sample. Similarly, a corrosion current density (jcorr) value of 20.5 μA/cm 2 was recorded for the uncoated sample which is much greater than the jcorr of the coated samples. This shows that the coating minimizes the exchange of current within the steel. The hardness value of the Zn-10SnO 2 -15Al 2 SiO 5 -coated steel was higher than other coated samples and 17.51% higher than the uncoated steel, and this indicates improvement in the mechanical property of the steel.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-019-03714-1</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2019-08, Vol.103 (5-8), p.2621-2625
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490881426
source SpringerLink Journals - AutoHoldings
subjects Aluminum silicates
CAE) and Design
Coated electrodes
Computer-Aided Engineering (CAD
Corrosion
Corrosion currents
Corrosion rate
Corrosion resistance
Corrosion resistant steels
Current density
Electron microscopes
Electroplating
Engineering
Industrial and Production Engineering
Low carbon steels
Mechanical Engineering
Mechanical properties
Media Management
Microhardness
Original Article
Protective coatings
Thin films
Tin dioxide
Zinc coatings
title Evolution of physical and mechanical characteristics of deposited composite coatings on A356 mild steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T03%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20physical%20and%20mechanical%20characteristics%20of%20deposited%20composite%20coatings%20on%20A356%20mild%20steel&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Fayomi,%20O.%20S.%20I.&rft.date=2019-08-01&rft.volume=103&rft.issue=5-8&rft.spage=2621&rft.epage=2625&rft.pages=2621-2625&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-019-03714-1&rft_dat=%3Cproquest_cross%3E2490881426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260520750&rft_id=info:pmid/&rfr_iscdi=true