Parametric optimization and surface analysis of diamond grinding-assisted EDM of TiN-Al2O3 ceramic composite

Diamond grinding-assisted electro-discharge (DGAED) machining is a hybrid machining process which can be used to improve the material removal rate (MRR) for the difficulty to machine materials like superalloys, ceramics, and composites. The main aim of this paper is to develop a model for DGAED mach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2019-02, Vol.100 (5-8), p.1183-1192
Hauptverfasser: Baghel, R., Mali, H. S., Biswas, S. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1192
container_issue 5-8
container_start_page 1183
container_title International journal of advanced manufacturing technology
container_volume 100
creator Baghel, R.
Mali, H. S.
Biswas, S. K.
description Diamond grinding-assisted electro-discharge (DGAED) machining is a hybrid machining process which can be used to improve the material removal rate (MRR) for the difficulty to machine materials like superalloys, ceramics, and composites. The main aim of this paper is to develop a model for DGAED machining of titanium nitride-aluminum oxide (TiN-Al 2 O 3 ) ceramic composite for predicting MRR. TiN-Al 2 O 3 ceramic composite finds industrial application due to its properties like high resistance to abrasion wear, chemical stability, hardness, and low friction coefficient. The characteristic features of DGAED machining of the TiN-Al 2 O 3 ceramic composite are explored through response surface methodology (RSM) for face-centered central composite rotatable design (CCRD) with seven-center-point scheme. Wheel speed (S), peak current (I), pulse on time (t on ), and duty factor (DF) are taken as control factors while MRR is taken as the performance parameter. The experimental results for MRR are analyzed and regression equation for material removal rate is obtained. The surface topography shows that melting and thermal spalling are primary material removal mechanisms. Microcracks and micropores are found diminished on the machined surface and MRR is improved as the wheel rotation speed increased.
doi_str_mv 10.1007/s00170-018-1842-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490879700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2176776250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-98161a83c9d81bfbc0b10dc242f2a47e95674fd66051c7d4ea5c2b5e6f2af4a3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7hF4mzwK7ZzrMpTKpRD75bj2JWrJC52emh_PY6CxAlOu9J8M9odAG4xuscIiYeEEBYIIiwhlozA0xmYYUYppAiX52CGCJeQCi4vwVVKu0xzzOUMtJ866s4O0Zsi7Aff-ZMefOgL3TdFOkSnjc27bo_JpyK4ovG6C1nbRt83vt9CnbIy2KZ4enwfgY3_gIuWrGlhbI7OuSZ0-5D8YK_BhdNtsjc_cw42z0-b5StcrV_elosVNJSxAVYyH6clNVUjce1qg2qMGkMYcUQzYauSC-YazlGJjWiY1aUhdWl5lh3TdA7upth9DF8Hmwa1C4eYf0iKsApJUQmE_qWw4EJwUo4UnigTQ0rROrWPvtPxqDBSY_Nqal7l5tXYvDplD5k8KbP91sbf5L9N3xXvhrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490879700</pqid></control><display><type>article</type><title>Parametric optimization and surface analysis of diamond grinding-assisted EDM of TiN-Al2O3 ceramic composite</title><source>Springer Nature - Complete Springer Journals</source><creator>Baghel, R. ; Mali, H. S. ; Biswas, S. K.</creator><creatorcontrib>Baghel, R. ; Mali, H. S. ; Biswas, S. K.</creatorcontrib><description>Diamond grinding-assisted electro-discharge (DGAED) machining is a hybrid machining process which can be used to improve the material removal rate (MRR) for the difficulty to machine materials like superalloys, ceramics, and composites. The main aim of this paper is to develop a model for DGAED machining of titanium nitride-aluminum oxide (TiN-Al 2 O 3 ) ceramic composite for predicting MRR. TiN-Al 2 O 3 ceramic composite finds industrial application due to its properties like high resistance to abrasion wear, chemical stability, hardness, and low friction coefficient. The characteristic features of DGAED machining of the TiN-Al 2 O 3 ceramic composite are explored through response surface methodology (RSM) for face-centered central composite rotatable design (CCRD) with seven-center-point scheme. Wheel speed (S), peak current (I), pulse on time (t on ), and duty factor (DF) are taken as control factors while MRR is taken as the performance parameter. The experimental results for MRR are analyzed and regression equation for material removal rate is obtained. The surface topography shows that melting and thermal spalling are primary material removal mechanisms. Microcracks and micropores are found diminished on the machined surface and MRR is improved as the wheel rotation speed increased.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-018-1842-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Abrasion resistance ; Aluminum oxide ; CAE) and Design ; Ceramics industry ; Coefficient of friction ; Computer-Aided Engineering (CAD ; Diamond machining ; Engineering ; Friction resistance ; Grinding ; High resistance ; Industrial and Production Engineering ; Industrial applications ; Machine shops ; Material removal rate (machining) ; Mechanical Engineering ; Media Management ; Microcracks ; Optimization ; Organic chemistry ; Original Article ; Process planning ; Regression analysis ; Response surface methodology ; Spalling ; Superalloys ; Surface analysis (chemical) ; Titanium nitride ; Wear resistance</subject><ispartof>International journal of advanced manufacturing technology, 2019-02, Vol.100 (5-8), p.1183-1192</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-98161a83c9d81bfbc0b10dc242f2a47e95674fd66051c7d4ea5c2b5e6f2af4a3</citedby><cites>FETCH-LOGICAL-c344t-98161a83c9d81bfbc0b10dc242f2a47e95674fd66051c7d4ea5c2b5e6f2af4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-018-1842-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-018-1842-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Baghel, R.</creatorcontrib><creatorcontrib>Mali, H. S.</creatorcontrib><creatorcontrib>Biswas, S. K.</creatorcontrib><title>Parametric optimization and surface analysis of diamond grinding-assisted EDM of TiN-Al2O3 ceramic composite</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Diamond grinding-assisted electro-discharge (DGAED) machining is a hybrid machining process which can be used to improve the material removal rate (MRR) for the difficulty to machine materials like superalloys, ceramics, and composites. The main aim of this paper is to develop a model for DGAED machining of titanium nitride-aluminum oxide (TiN-Al 2 O 3 ) ceramic composite for predicting MRR. TiN-Al 2 O 3 ceramic composite finds industrial application due to its properties like high resistance to abrasion wear, chemical stability, hardness, and low friction coefficient. The characteristic features of DGAED machining of the TiN-Al 2 O 3 ceramic composite are explored through response surface methodology (RSM) for face-centered central composite rotatable design (CCRD) with seven-center-point scheme. Wheel speed (S), peak current (I), pulse on time (t on ), and duty factor (DF) are taken as control factors while MRR is taken as the performance parameter. The experimental results for MRR are analyzed and regression equation for material removal rate is obtained. The surface topography shows that melting and thermal spalling are primary material removal mechanisms. Microcracks and micropores are found diminished on the machined surface and MRR is improved as the wheel rotation speed increased.</description><subject>Abrasion resistance</subject><subject>Aluminum oxide</subject><subject>CAE) and Design</subject><subject>Ceramics industry</subject><subject>Coefficient of friction</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Diamond machining</subject><subject>Engineering</subject><subject>Friction resistance</subject><subject>Grinding</subject><subject>High resistance</subject><subject>Industrial and Production Engineering</subject><subject>Industrial applications</subject><subject>Machine shops</subject><subject>Material removal rate (machining)</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Microcracks</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>Original Article</subject><subject>Process planning</subject><subject>Regression analysis</subject><subject>Response surface methodology</subject><subject>Spalling</subject><subject>Superalloys</subject><subject>Surface analysis (chemical)</subject><subject>Titanium nitride</subject><subject>Wear resistance</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwA7hF4mzwK7ZzrMpTKpRD75bj2JWrJC52emh_PY6CxAlOu9J8M9odAG4xuscIiYeEEBYIIiwhlozA0xmYYUYppAiX52CGCJeQCi4vwVVKu0xzzOUMtJ866s4O0Zsi7Aff-ZMefOgL3TdFOkSnjc27bo_JpyK4ovG6C1nbRt83vt9CnbIy2KZ4enwfgY3_gIuWrGlhbI7OuSZ0-5D8YK_BhdNtsjc_cw42z0-b5StcrV_elosVNJSxAVYyH6clNVUjce1qg2qMGkMYcUQzYauSC-YazlGJjWiY1aUhdWl5lh3TdA7upth9DF8Hmwa1C4eYf0iKsApJUQmE_qWw4EJwUo4UnigTQ0rROrWPvtPxqDBSY_Nqal7l5tXYvDplD5k8KbP91sbf5L9N3xXvhrA</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Baghel, R.</creator><creator>Mali, H. S.</creator><creator>Biswas, S. K.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190201</creationdate><title>Parametric optimization and surface analysis of diamond grinding-assisted EDM of TiN-Al2O3 ceramic composite</title><author>Baghel, R. ; Mali, H. S. ; Biswas, S. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-98161a83c9d81bfbc0b10dc242f2a47e95674fd66051c7d4ea5c2b5e6f2af4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abrasion resistance</topic><topic>Aluminum oxide</topic><topic>CAE) and Design</topic><topic>Ceramics industry</topic><topic>Coefficient of friction</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Diamond machining</topic><topic>Engineering</topic><topic>Friction resistance</topic><topic>Grinding</topic><topic>High resistance</topic><topic>Industrial and Production Engineering</topic><topic>Industrial applications</topic><topic>Machine shops</topic><topic>Material removal rate (machining)</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Microcracks</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>Original Article</topic><topic>Process planning</topic><topic>Regression analysis</topic><topic>Response surface methodology</topic><topic>Spalling</topic><topic>Superalloys</topic><topic>Surface analysis (chemical)</topic><topic>Titanium nitride</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baghel, R.</creatorcontrib><creatorcontrib>Mali, H. S.</creatorcontrib><creatorcontrib>Biswas, S. K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baghel, R.</au><au>Mali, H. S.</au><au>Biswas, S. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric optimization and surface analysis of diamond grinding-assisted EDM of TiN-Al2O3 ceramic composite</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>100</volume><issue>5-8</issue><spage>1183</spage><epage>1192</epage><pages>1183-1192</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Diamond grinding-assisted electro-discharge (DGAED) machining is a hybrid machining process which can be used to improve the material removal rate (MRR) for the difficulty to machine materials like superalloys, ceramics, and composites. The main aim of this paper is to develop a model for DGAED machining of titanium nitride-aluminum oxide (TiN-Al 2 O 3 ) ceramic composite for predicting MRR. TiN-Al 2 O 3 ceramic composite finds industrial application due to its properties like high resistance to abrasion wear, chemical stability, hardness, and low friction coefficient. The characteristic features of DGAED machining of the TiN-Al 2 O 3 ceramic composite are explored through response surface methodology (RSM) for face-centered central composite rotatable design (CCRD) with seven-center-point scheme. Wheel speed (S), peak current (I), pulse on time (t on ), and duty factor (DF) are taken as control factors while MRR is taken as the performance parameter. The experimental results for MRR are analyzed and regression equation for material removal rate is obtained. The surface topography shows that melting and thermal spalling are primary material removal mechanisms. Microcracks and micropores are found diminished on the machined surface and MRR is improved as the wheel rotation speed increased.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-018-1842-z</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2019-02, Vol.100 (5-8), p.1183-1192
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490879700
source Springer Nature - Complete Springer Journals
subjects Abrasion resistance
Aluminum oxide
CAE) and Design
Ceramics industry
Coefficient of friction
Computer-Aided Engineering (CAD
Diamond machining
Engineering
Friction resistance
Grinding
High resistance
Industrial and Production Engineering
Industrial applications
Machine shops
Material removal rate (machining)
Mechanical Engineering
Media Management
Microcracks
Optimization
Organic chemistry
Original Article
Process planning
Regression analysis
Response surface methodology
Spalling
Superalloys
Surface analysis (chemical)
Titanium nitride
Wear resistance
title Parametric optimization and surface analysis of diamond grinding-assisted EDM of TiN-Al2O3 ceramic composite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A03%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20optimization%20and%20surface%20analysis%20of%20diamond%20grinding-assisted%20EDM%20of%20TiN-Al2O3%20ceramic%20composite&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Baghel,%20R.&rft.date=2019-02-01&rft.volume=100&rft.issue=5-8&rft.spage=1183&rft.epage=1192&rft.pages=1183-1192&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-018-1842-z&rft_dat=%3Cproquest_cross%3E2176776250%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490879700&rft_id=info:pmid/&rfr_iscdi=true