Constitutive modeling and deformation analysis for the ultrasonic-assisted incremental forming process

The application of high-frequency vibration on the incremental forming process could cause changes in the plasticity of material which may contribute to the reduction of forming force, the increase of formability, and the improvement of surface finish. The present work aims to deepen the understandi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2019-10, Vol.104 (5-8), p.2287-2299
Hauptverfasser: Li, Yanle, Cheng, Zinan, Chen, Xiaoxiao, Long, Yangyang, Li, Xiaoqiang, Li, Fangyi, Li, Jianfeng, Twiefel, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2299
container_issue 5-8
container_start_page 2287
container_title International journal of advanced manufacturing technology
container_volume 104
creator Li, Yanle
Cheng, Zinan
Chen, Xiaoxiao
Long, Yangyang
Li, Xiaoqiang
Li, Fangyi
Li, Jianfeng
Twiefel, Jens
description The application of high-frequency vibration on the incremental forming process could cause changes in the plasticity of material which may contribute to the reduction of forming force, the increase of formability, and the improvement of surface finish. The present work aims to deepen the understanding of the softening effect to facilitate the accurate prediction of the ultrasonic-assisted forming process. First, a theoretical model describing the relationship between the stress and strain during the ultrasonic-assisted incremental sheet forming (UISF) was established based on the theory of crystal plasticity. In particular, the acoustic softening effect was reflected by adjusting the thermal activation process and the dislocation density evolution process. Then, the constitutive model parameters were identified through the back propagation (BP) neural network based on the experimental results. In addition, the developed model was used to simulate the UISF process by ANSYS/LS-DYNA software, and the effect of ultrasonic vibration on the deformation behavior was revealed. The results show that the FE model with the modified constitutive model considering the softening effect can improve the prediction accuracy.
doi_str_mv 10.1007/s00170-019-04031-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2490876301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305711979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-7eed388a1bba452272f7100d7dd5ff77644e8a84d95ba11ca4823f776b9cd4b03</originalsourceid><addsrcrecordid>eNp9kM1OxCAURonRxHH0BVw1cY1CoYUuzcS_ZBI3uia00JFJCyOXmszbS62JO1eEy_k-4CB0TcktJUTcASFUEExogwknjGJ2glaUM4YZodUpWpGylpiJWp6jC4B9xmtayxXqN8FDcmlK7ssWYzB2cH5XaG8KY_sQR51c8HmvhyM4KPKoSB-2mIYUNQTvOqwhHyRrCue7aEfrkx5mbpyLDjF0FuASnfV6AHv1u67R--PD2-YZb1-fXjb3W9wxLhIW1hompaZtq3lVlqLsRf6fEcZUfS9EzbmVWnLTVK2mtNNclmyet01neEvYGt0svfnez8lCUvswxfx4UCVviBR19vEvxUglKG1Ek6lyoboYAKLt1SG6UcejokTN1tViXWXr6se6YjnElhBk2O9s_Kv-J_UNSb6GaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305711979</pqid></control><display><type>article</type><title>Constitutive modeling and deformation analysis for the ultrasonic-assisted incremental forming process</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Yanle ; Cheng, Zinan ; Chen, Xiaoxiao ; Long, Yangyang ; Li, Xiaoqiang ; Li, Fangyi ; Li, Jianfeng ; Twiefel, Jens</creator><creatorcontrib>Li, Yanle ; Cheng, Zinan ; Chen, Xiaoxiao ; Long, Yangyang ; Li, Xiaoqiang ; Li, Fangyi ; Li, Jianfeng ; Twiefel, Jens</creatorcontrib><description>The application of high-frequency vibration on the incremental forming process could cause changes in the plasticity of material which may contribute to the reduction of forming force, the increase of formability, and the improvement of surface finish. The present work aims to deepen the understanding of the softening effect to facilitate the accurate prediction of the ultrasonic-assisted forming process. First, a theoretical model describing the relationship between the stress and strain during the ultrasonic-assisted incremental sheet forming (UISF) was established based on the theory of crystal plasticity. In particular, the acoustic softening effect was reflected by adjusting the thermal activation process and the dislocation density evolution process. Then, the constitutive model parameters were identified through the back propagation (BP) neural network based on the experimental results. In addition, the developed model was used to simulate the UISF process by ANSYS/LS-DYNA software, and the effect of ultrasonic vibration on the deformation behavior was revealed. The results show that the FE model with the modified constitutive model considering the softening effect can improve the prediction accuracy.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-019-04031-3</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Back propagation networks ; CAD ; CAE) and Design ; Computer aided design ; Computer simulation ; Computer-Aided Engineering (CAD ; Constitutive models ; Deformation analysis ; Deformation effects ; Dislocation density ; Engineering ; Forming techniques ; Industrial and Production Engineering ; Mathematical models ; Mechanical Engineering ; Media Management ; Neural networks ; Original Article ; Parameter identification ; Plastic properties ; Softening ; Surface finish ; Ultrasonic vibration ; Vibration analysis</subject><ispartof>International journal of advanced manufacturing technology, 2019-10, Vol.104 (5-8), p.2287-2299</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-7eed388a1bba452272f7100d7dd5ff77644e8a84d95ba11ca4823f776b9cd4b03</citedby><cites>FETCH-LOGICAL-c347t-7eed388a1bba452272f7100d7dd5ff77644e8a84d95ba11ca4823f776b9cd4b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-019-04031-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-019-04031-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Yanle</creatorcontrib><creatorcontrib>Cheng, Zinan</creatorcontrib><creatorcontrib>Chen, Xiaoxiao</creatorcontrib><creatorcontrib>Long, Yangyang</creatorcontrib><creatorcontrib>Li, Xiaoqiang</creatorcontrib><creatorcontrib>Li, Fangyi</creatorcontrib><creatorcontrib>Li, Jianfeng</creatorcontrib><creatorcontrib>Twiefel, Jens</creatorcontrib><title>Constitutive modeling and deformation analysis for the ultrasonic-assisted incremental forming process</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The application of high-frequency vibration on the incremental forming process could cause changes in the plasticity of material which may contribute to the reduction of forming force, the increase of formability, and the improvement of surface finish. The present work aims to deepen the understanding of the softening effect to facilitate the accurate prediction of the ultrasonic-assisted forming process. First, a theoretical model describing the relationship between the stress and strain during the ultrasonic-assisted incremental sheet forming (UISF) was established based on the theory of crystal plasticity. In particular, the acoustic softening effect was reflected by adjusting the thermal activation process and the dislocation density evolution process. Then, the constitutive model parameters were identified through the back propagation (BP) neural network based on the experimental results. In addition, the developed model was used to simulate the UISF process by ANSYS/LS-DYNA software, and the effect of ultrasonic vibration on the deformation behavior was revealed. The results show that the FE model with the modified constitutive model considering the softening effect can improve the prediction accuracy.</description><subject>Back propagation networks</subject><subject>CAD</subject><subject>CAE) and Design</subject><subject>Computer aided design</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Constitutive models</subject><subject>Deformation analysis</subject><subject>Deformation effects</subject><subject>Dislocation density</subject><subject>Engineering</subject><subject>Forming techniques</subject><subject>Industrial and Production Engineering</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Parameter identification</subject><subject>Plastic properties</subject><subject>Softening</subject><subject>Surface finish</subject><subject>Ultrasonic vibration</subject><subject>Vibration analysis</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1OxCAURonRxHH0BVw1cY1CoYUuzcS_ZBI3uia00JFJCyOXmszbS62JO1eEy_k-4CB0TcktJUTcASFUEExogwknjGJ2glaUM4YZodUpWpGylpiJWp6jC4B9xmtayxXqN8FDcmlK7ssWYzB2cH5XaG8KY_sQR51c8HmvhyM4KPKoSB-2mIYUNQTvOqwhHyRrCue7aEfrkx5mbpyLDjF0FuASnfV6AHv1u67R--PD2-YZb1-fXjb3W9wxLhIW1hompaZtq3lVlqLsRf6fEcZUfS9EzbmVWnLTVK2mtNNclmyet01neEvYGt0svfnez8lCUvswxfx4UCVviBR19vEvxUglKG1Ek6lyoboYAKLt1SG6UcejokTN1tViXWXr6se6YjnElhBk2O9s_Kv-J_UNSb6GaA</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Li, Yanle</creator><creator>Cheng, Zinan</creator><creator>Chen, Xiaoxiao</creator><creator>Long, Yangyang</creator><creator>Li, Xiaoqiang</creator><creator>Li, Fangyi</creator><creator>Li, Jianfeng</creator><creator>Twiefel, Jens</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191001</creationdate><title>Constitutive modeling and deformation analysis for the ultrasonic-assisted incremental forming process</title><author>Li, Yanle ; Cheng, Zinan ; Chen, Xiaoxiao ; Long, Yangyang ; Li, Xiaoqiang ; Li, Fangyi ; Li, Jianfeng ; Twiefel, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-7eed388a1bba452272f7100d7dd5ff77644e8a84d95ba11ca4823f776b9cd4b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Back propagation networks</topic><topic>CAD</topic><topic>CAE) and Design</topic><topic>Computer aided design</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Constitutive models</topic><topic>Deformation analysis</topic><topic>Deformation effects</topic><topic>Dislocation density</topic><topic>Engineering</topic><topic>Forming techniques</topic><topic>Industrial and Production Engineering</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Parameter identification</topic><topic>Plastic properties</topic><topic>Softening</topic><topic>Surface finish</topic><topic>Ultrasonic vibration</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yanle</creatorcontrib><creatorcontrib>Cheng, Zinan</creatorcontrib><creatorcontrib>Chen, Xiaoxiao</creatorcontrib><creatorcontrib>Long, Yangyang</creatorcontrib><creatorcontrib>Li, Xiaoqiang</creatorcontrib><creatorcontrib>Li, Fangyi</creatorcontrib><creatorcontrib>Li, Jianfeng</creatorcontrib><creatorcontrib>Twiefel, Jens</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yanle</au><au>Cheng, Zinan</au><au>Chen, Xiaoxiao</au><au>Long, Yangyang</au><au>Li, Xiaoqiang</au><au>Li, Fangyi</au><au>Li, Jianfeng</au><au>Twiefel, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constitutive modeling and deformation analysis for the ultrasonic-assisted incremental forming process</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>104</volume><issue>5-8</issue><spage>2287</spage><epage>2299</epage><pages>2287-2299</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The application of high-frequency vibration on the incremental forming process could cause changes in the plasticity of material which may contribute to the reduction of forming force, the increase of formability, and the improvement of surface finish. The present work aims to deepen the understanding of the softening effect to facilitate the accurate prediction of the ultrasonic-assisted forming process. First, a theoretical model describing the relationship between the stress and strain during the ultrasonic-assisted incremental sheet forming (UISF) was established based on the theory of crystal plasticity. In particular, the acoustic softening effect was reflected by adjusting the thermal activation process and the dislocation density evolution process. Then, the constitutive model parameters were identified through the back propagation (BP) neural network based on the experimental results. In addition, the developed model was used to simulate the UISF process by ANSYS/LS-DYNA software, and the effect of ultrasonic vibration on the deformation behavior was revealed. The results show that the FE model with the modified constitutive model considering the softening effect can improve the prediction accuracy.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-019-04031-3</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2019-10, Vol.104 (5-8), p.2287-2299
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2490876301
source SpringerLink Journals - AutoHoldings
subjects Back propagation networks
CAD
CAE) and Design
Computer aided design
Computer simulation
Computer-Aided Engineering (CAD
Constitutive models
Deformation analysis
Deformation effects
Dislocation density
Engineering
Forming techniques
Industrial and Production Engineering
Mathematical models
Mechanical Engineering
Media Management
Neural networks
Original Article
Parameter identification
Plastic properties
Softening
Surface finish
Ultrasonic vibration
Vibration analysis
title Constitutive modeling and deformation analysis for the ultrasonic-assisted incremental forming process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constitutive%20modeling%20and%20deformation%20analysis%20for%20the%20ultrasonic-assisted%20incremental%20forming%20process&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Li,%20Yanle&rft.date=2019-10-01&rft.volume=104&rft.issue=5-8&rft.spage=2287&rft.epage=2299&rft.pages=2287-2299&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-019-04031-3&rft_dat=%3Cproquest_cross%3E2305711979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2305711979&rft_id=info:pmid/&rfr_iscdi=true